首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
《中国化学》2017,35(12):1824-1828
Two structurally characterized metal‐cluster‐centered supramolecular architectures named [Ag8(1,2‐(C ≡ C)2‐C6H4 )( Py[6] )(CF3CO2 )6] · 2.5MeOH ( 1 ) and [Ag12(1,2,4,5‐(C ≡ C)4C6H2 )( Py[6] )2(CF3SO3 )8]·4MeOH ·3H2O ( 2 ) are synthesized through the interaction with a bowl‐shaped macrocyclic ligand Py[6] . Particularly, two dissimilar silver(I) clusters are resulted in 2 within the structure under the influence of the macrocyclic ligand Py[6] . Such dissimilarity of the silver(I) cluster is also reflected on the structural and photophysical differences between 1 and 2 .  相似文献   

2.
One-electron oxidation of two series of diaryldichalcogenides (C6F5E)2 (13a–c) and (2,6-Mes2C6H3E)2 (16a–c) was studied (E = S, Se, Te). The reaction of 13a and 13b with AsF5 and SbF5 gave rise to the formation of thermally unstable radical cations [(C6F5S)2+ (14a) and [(C6F5Se)2+ (14b) that were isolated as [Sb2F11] and [As2F11] salts, respectively. The reaction of 13c with AsF5 afforded only the product of a Te–C bond cleavage, namely the previously known dication [Te4]2+ that was isolated as [AsF6] salt. The reaction of (2,6-Mes2C6H3E)2 (16a–c) with [NO][SbF6] provided the corresponding radical cations [(2,6-Mes2C6H3E)2+ (17a–c; E = S, Se, Te) in the form of thermally stable [SbF6] salts in nearly quantitative yields. The electronic and structural properties of these radical cations were probed by X-ray diffraction analysis, EPR spectroscopy, and density functional theory calculations and other methods.  相似文献   

3.
The hexanuclear gold carbonyl cluster [PPh4]2[Au6(CF3)6Br2(CO)2] (4) has been obtained by spontaneous self-assembly of the following independent units: CF3AuCO (1) and [PPh4][Br(AuCF3)2] (3). The cyclo-Au6 aggregate 4, in which the components are held together by unassisted, fairly strong aurophilic interactions (Au···Au ∼310 pm), exhibits a cyclohexane-like arrangement with chair conformation. These aurophilic interactions also result in significant ν(CO) lowering: from 2194 cm–1 in the separate component 1 to 2171 cm–1 in the mixed aggregate 4. Procedures to prepare the single-bridged dinuclear component 3 as well as the mononuclear derivative [PPh4][CF3AuBr] (2) are also reported.  相似文献   

4.
To design and exploit novel macrocyclic synthetic receptors is a permanent and challenging topic in supramolecular chemistry. Here we describe the one-pot synthesis, unique geometries and intriguing host–guest properties of a new class of supramolecular macrocycles – biphen[n]arenes (n = 3, 4), which are made up of 4,4′-biphenol or 4,4′-biphenol ether units linked by methylene bridges at the 3- and 3′- positions. The biphenarene macrocycles are conveniently accessible/modifiable and extremely guest-friendly. Particularly, biphen[4]arene is capable of forming inclusion complexes with not only organic cationic guests but also neutral π-electron deficient molecules. Compared with calixarenes, resorcinarenes, cyclotriveratrylenes and pillararenes with substituted mono-benzene units, the biphen[n]arenes reported here possess significantly different characteristics in both their topologic structures and their recognition properties, and thus can find broad applications in supramolecular chemistry and other areas.  相似文献   

5.
Surface-enhanced Raman scattering (SERS) of 4,4′-azopyridine (AZPY) on silver foil substrate was measured under 1064 nm excitation lines. Density-functional theory (DFT) methods were used to calculate the structure and vibrational spectra of models such as Ag–AZPY, Ag4–AZPY and Ag6–AZPY complexes with B3LYP/6-31++G(d,p)(C,H,N)/Lanl2dz(Ag) basis set. The Raman bands of AZPY were identified on the ground of analog computation of potential energy distribution. The calculated spectra of Ag4–AZPY and Ag6–AZPY models were much approximated to the experimental results than that of Ag–AZPY model. The DFT results showed that the angles between two pyridyl rings keep 0° from AZPY to Ag–AZPY, Ag4–AZPY and Ag6–AZPY model. The energy gaps between the HOMO and LUMO changed from 363 to 1140 nm for AZPY-Ag complexes according to the DFT results. An conclusion was conceived that chemical enhancement mechanism may play an important role in the SERS of AZPY on silver substrate.  相似文献   

6.
Ag16B4O10 has been obtained as a coarse crystalline material via hydrothermal synthesis, and was characterized by X-ray single crystal and powder diffraction, conductivity and magnetic susceptibility measurements, as well as by DFT based theoretical analyses. Neither composition nor crystal structure nor valence electron counts can be fully rationalized by applying known bonding schemes. While the rare cage anion (B4O10)8− is electron precise, and reflects standard bonding properties, the silver ion substructure necessarily has to accommodate eight excess electrons per formula unit, (Ag+)16(B3+)4(O2−)10 × 8e, rendering the compound sub-valent with respect to silver. However, the phenomena commonly associated with sub-valence metal (partial) structures are not perceptible in this case. Experimentally, the compound has been found to be semiconducting and diamagnetic, ruling out the presence of itinerant electrons; hence the excess electrons have to localize pairwise. However, no pairwise contractions of silver atoms are realized in the structure, thus excluding formation of 2e–2c bonds. Rather, cluster-like aggregates of an approximately tetrahedral shape exist where the Ag–Ag separations are significantly smaller than in elemental silver. The number of these subunits per formula is four, thus matching the required number of sites for pairwise nesting of eight excess electrons. This scenario has been corroborated by computational analyses of the densities of states and electron localization function (ELF), which clearly indicate the presence of an attractor within the shrunken tetrahedral voids in the silver substructure. However, one bonding electron pair of s and p type skeleton electrons per cluster unit is extremely low, and the significant propensity to form and the thermal stability of the title compound suggest d10–d10 bonding interactions to strengthen the inter-cluster bonding in a synergistic fashion. With the present state of knowledge, such a particular bonding pattern appears to be a singular feature of the oxide chemistry of silver; however, as indicated by analogous findings in related silver oxides, it is evolving as a general one.

Ag16B4O10, obtained via hydrothermal synthesis, displays an unprecedented bonding scheme, hosting excess electrons localized pairwise in cluster-like silver subunits.  相似文献   

7.
The cage‐like complex, Ag4L4(NO3)4 ( 1 ) [L = 1, 4‐bis(pyridine‐2‐ylmethoxy)benzene] was synthesized by the reaction of the flexible bidentate ligand and silver nitrate. It was characterized by elemental analysis, IR spectroscopy, TG, and single‐crystal X‐ray analysis. Complex 1 is reported as the first cage‐like cluster constructed by four nitrate anions bridging two [2+2] macrocycles. A blue luminescent emission and luminescent enhancement effect are observed in complex 1 .  相似文献   

8.
The silver salts of 1‐adamantanethiol (AdSH) and furan‐2‐ylmethanethiol (FurCH2SH) were successfully applied as building blocks for ligand‐protected Ag2S nanoclusters. The reaction of the silver thiolates [AgSAd]x and [AgSCH2Fur]x with S(SiMe3)2 and 1,5‐bis(diphenylphosphino)pentane (dpppt) afforded three different clusters with 58, 94 and, 190 silver atoms. The intensely colored compounds [Ag58S13(SAd)32] ( 1 ), [Ag94S34(SAd)26(dpppt)6] ( 2 ), and [Ag190S58(SCH2Fur)74(dpppt)8] ( 3 ) were structurally characterized by single‐crystal X‐ray diffraction and exhibit different cluster core geometries and ligand shells. The diameters of the well‐defined sphere‐shaped nanoclusters range from 2.2 nm to 3.5 nm.  相似文献   

9.
Density functional GGA-PW91 method with DNP basis set is applied to optimize the geometries of Ag n H (n = 1–10) clusters. For the lowest energy geometries of Ag n H (n = 1–10) clusters, the hydrogen atom prefers to occupy the two-fold coordination bridge site except the occupation of single-fold coordination site in AgH cluster. After adsorption of hydrogen atom, most Ag n structures are slightly perturbed and only the Ag6 structure in Ag6H cluster is distorted obviously. The Ag–Ag bond is strengthened and the strength of Ag–H bond exhibits a clear odd–even oscillation like the strength of Au–H bond in Au n H clusters, indicating that the hydrogen atom is more favorable to be adsorbed by odd-numbered pure silver clusters. The adsorption strength of small silver cluster toward H atom is obviously weaker than that of small gold cluster toward H atom due to the strong scalar relativistic effect in small gold cluster. The pronounced odd–even alternation of the magnetic moments is observed in Ag n H systems, indicating that the Ag n H clusters possess tunable magnetic properties by adsorbing hydrogen atom onto odd-numbered or even-numbered small silver cluster.  相似文献   

10.
Hydrogen sulfide (H2S) has emerged as an important biological signaling molecule in the last decade. During the growth of this field, significant controversy has arisen centered on the physiological concentrations of H2S. Recently, a monobromobimane (mBB) method has been developed for the quantification of different biologically-relevant sulfide pools. Based on the prevalence of the mBB method for sulfide quantification, we expand on this method to report the use of dibromobimane (dBB) for sulfide quantification. Reaction of H2S with dBB results in formation of highly-fluorescent bimane thioether (BTE), which is readily quantifiable by HPLC. Additionally, the reaction of sulfide with dBB to form BTE is significantly faster than the reaction of sulfide with mBB to form sulfide dibimane. Using the dBB method, BTE levels as low as 0.6 pM can be detected. Upon use of the dBB method in wild-type and CSE–/– mice, however, dBB reports significantly higher sulfide levels than those measured using mBB. Further investigation revealed that dBB is able to extract sulfur from other sulfhydryl sources including thiols. Based on mechanistic studies, we demonstrate that dBB extracts sulfur from thiols with α- or β-hydrogens, thus leading to higher BTE formation than from sulfide alone. Taken together, the dBB method is a highly sensitive method for H2S but is not compatible for use in studies in which other thiols are present.  相似文献   

11.
Hydrogenases are complex metalloenzymes that catalyze the reversible splitting of molecular hydrogen into protons and electrons essentially without overpotential. The NAD+-reducing soluble hydrogenase (SH) from Ralstonia eutropha is capable of H2 conversion even in the presence of usually toxic dioxygen. The molecular details of the underlying reactions are largely unknown, mainly because of limited knowledge of the structure and function of the various metal cofactors present in the enzyme. Here, all iron-containing cofactors of the SH were investigated by 57Fe specific nuclear resonance vibrational spectroscopy (NRVS). Our data provide experimental evidence for one [2Fe2S] center and four [4Fe4S] clusters, which is consistent with the amino acid sequence composition. Only the [2Fe2S] cluster and one of the four [4Fe4S] clusters were reduced upon incubation of the SH with NADH. This finding explains the discrepancy between the large number of FeS clusters and the small amount of FeS cluster-related signals as detected by electron paramagnetic resonance spectroscopic analysis of several NAD+-reducing hydrogenases. For the first time, Fe–CO and Fe–CN modes derived from the [NiFe] active site could be distinguished by NRVS through selective 13C labeling of the CO ligand. This strategy also revealed the molecular coordinates that dominate the individual Fe–CO modes. The present approach explores the complex vibrational signature of the Fe–S clusters and the hydrogenase active site, thereby showing that NRVS represents a powerful tool for the elucidation of complex biocatalysts containing multiple cofactors.  相似文献   

12.
Anodic oxidation of Ag–Cu and Ag–Pd alloys in concentrated sulfuric acid solutions is studied by cyclic voltammetry. Influence of electronegative (Cu) and electropositive (Pd) constituents on the rate and mechanism of the silver electrooxidation in non-steady-state conditions is revealed. The maximum silver oxidation current increases with the copper content due to a decreased H2SO4 concentration in the near-electrode layer and increased solubility of passivating phase Ag2SO4. The mechanism of ionization of palladium-doped silver is complicated by two electrochemical reactions involving the formation of Ag2SO4 and Ag+ solv.  相似文献   

13.
A decanuclear silver chalcogenide cluster, [Ag10(Se){Se2P(OiPr)2}8] (2) was isolated from a hydride-encapsulated silver diisopropyl diselenophosphates, [Ag7(H){Se2P(OiPr)2}6], under thermal condition. The time-dependent NMR spectroscopy showed that 2 was generated at the first three hours and the hydrido silver cluster was completely consumed after thirty-six hours. This method illustrated as cluster-to-cluster transformations can be applied to prepare selenide-centered decanuclear bimetallic clusters, [CuxAg10-x(Se){Se2P(OiPr)2}8] (x = 0–7, 3), via heating [CuxAg7−x(H){Se2P(OiPr)2}6] (x = 1–6) at 60 °C. Compositions of 3 were accurately confirmed by the ESI mass spectrometry. While the crystal 2 revealed two un-identical [Ag10(Se){Se2P(OiPr)2}8] structures in the asymmetric unit, a co-crystal of [Cu3Ag7(Se){Se2P(OiPr)2}8]0.6[Cu4Ag6(Se){Se2P(OiPr)2}8]0.4 ([3a]0.6[3b]0.4) was eventually characterized by single-crystal X-ray diffraction. Even though compositions of 2, [3a]0.6[3b]0.4 and the previous published [Ag10(Se){Se2P(OEt)2}8] (1) are quite similar (10 metals, 1 Se2−, 8 ligands), their metal core arrangements are completely different. These results show that different synthetic methods by using different starting reagents can affect the structure of the resulting products, leading to polymorphism.  相似文献   

14.
The synthesis and structure of a giant 102‐silver‐atom nanocluster (NC) 1 is presented. X‐ray structural analysis reveals that 1 features a multi‐shelled metallic core of Ag6@Ag24@Ag60@Ag12. An octahedral Ag6 core is encaged by a truncated octahedral Ag24 shell. The Ag24 shell is composed of a hitherto unknown sodalite‐type silver orthophosphate cluster (SOC) {(Ag3PO4)8}, reminiscent of the Ag3PO4 photocatalyst. The SOC is capped by six interstitial sulfur atoms, giving a unique anionic cluster [Ag6@{(Ag3PO4)8}S6]6?, which functions as an intricate polyhedral template with abundant surface O and S atoms guiding the formation of a rare rhombicosidodecahedral Ag60 shell. An array of 6 linear Ag2 staples further surround this Ag60 shell. [Ag6@{(Ag3PO4)8}S6]6? is an unusual Ag‐based templating anion to induce the assembly of a SOC within silver NC. This finding provides molecular models for bulk Ag3PO4, and offers a fresh template strategy for the synthesis of silver NCs with high symmetry.  相似文献   

15.
Silver platinum binary alloys with compositions between about Ag2Pt98 and Ag95Pt5 at < 400 °C have largely not been observed in bulk due to the large immiscibility between these two metals. We present in this paper that Ag–Pt alloy nanostructures can be made in a broad composition range. The formation of Ag–Pt nanostructures is studied by powder X-ray diffraction (PXRD) and energy-dispersive X-ray (EDX). Our results indicate that lattice parameter changes almost linearly with composition in these Ag–Pt nanomaterials. In another word, lattice parameter and composition relationship follows the Vegard's law, which is a strong indication for the formation of metal alloys. Our transmission electron microscopy (TEM) study shows that the silver-rich Ag–Pt alloy nanostructures have spherical shape, while the platinum-rich ones possess wire-like morphology. The stability and crystal phase are investigated by annealing the alloy nanostructures directly or on carbon supports.  相似文献   

16.
Cu(i)-substituted metal oxide photocatalysts were prepared using molten CuCl treatment of wide band gap photocatalysts. The Cu(i)-substituted metal oxide photocatalysts possessed a new absorption band in the visible light region and showed photocatalytic activity for hydrogen evolution from an aqueous solution containing sulfur sacrificial reagents under visible light irradiation. Notably, the Cu(i)–K2La2Ti3O10 and Cu(i)–NaTaO3 photocatalysts showed relatively high activities for hydrogen evolution and gave apparent quantum yields of 0.18% at 420 nm. These photocatalysts responded up to 620 nm. Thus, Cu(i)-substitution using a molten CuCl treatment was an effective strategy for sensitizing a metal oxide photocatalyst with a wide band gap to visible light.  相似文献   

17.
We report the addition of M–H bonds (M = Al, Zn, Mg) to a Rh(iii) intermediate generated from the reductive elimination of triethylsilane from [Cp*Rh(H)2(SiEt3)2]. A series of new heterobimetallic complexes possessing Rh–M bonds have been isolated and characterised by a number of spectroscopic (1H, 29Si, 13C, 103Rh NMR, infrared, and X-ray diffraction) and computational techniques (NBO and QTAIM analysis). Experimental and computational data are consistent with cleavage of the M–H bond upon addition to rhodium with formation of new Rh–M and Rh–H bonds. Upon photolysis the Al analogue of this series undergoes a further elimination reaction producing triethylsilane and a highly unusual Rh2Al2H4 containing cluster proposed to contain an Al(i) bridging ligand.  相似文献   

18.
We report two anion-templated Ag40 clusters, [Ag40(E)4(SO4){S2P(OEt)2}24](PF6)6 (E = S, 1 ; Se, 2 ). The anionic templates were generated in situ from the decomposition of dithiophosphate (dtp) ligands. The extrusion of sulfur undergoes disproportionation reactions to generate sulfide and sulfate anions, which provide the source of templates in the subsequent cluster assembly reactions. Two Ag40 clusters display high similarity in their structures. The sulfide (selenide) anions and the central sulfate anion reveal a six-coordinate and a rare dodecametallic dodecaconnective pattern, respectively. Four near-equivalent [Ag10(E){S2P(OEt)2}6]2+ motifs were assembled via the connection of central sulfate anion to construct Ag40 clusters. The cluster cation, [Ag40(E)4(SO4){S2P(OEt)2}24]6+, displayed in T symmetry, is unprecedented in anion-templated silver clusters.  相似文献   

19.
As the third-generation rigid macrocycles evolved from progenitor 1, cyclic aromatic oligoamides 3, with a backbone of reduced constraint, exhibit extremely strong stacking with an astoundingly high affinity (estimated lower limit of K dimer > 1013 M–1 in CHCl3), which leads to dispersed tubular stacks that undergo further assembly in solution. Computational study reveals a very large binding energy (–49.77 kcal mol–1) and indicates highly cooperative local dipole interactions that account for the observed strength and directionality for the stacking of 3. In the solid-state, X-ray diffraction (XRD) confirms that the aggregation of 3 results in well-aligned tubular stacks. The persistent tubular assemblies of 3, with their non-deformable sub-nm pore, are expected to possess many interesting functions. One such function, transmembrane ion transport, is observed for 3.  相似文献   

20.
The structure of the new pentanary thio­phosphate rubidium silver diniobium tris(disulfide) tetrathio­phosphate, Rb0.38Ag0.5Nb2PS10, is made up of one‐dimensional [Nb2PS] chains along the [001] direction. These chains are separated from one another by Ag+ and disordered Rb+ ions. The Nb2PS chain is built up from bicapped trigonal prismatic Nb2S12 units which lie about inversion centres and tetrahedral PS4 groups. The Nb2S12 units are linked together to form linear Nb2S9 chains by sharing S—S prism edges. Short [2.898 (1) and 2.908 (1) Å] and long [3.724 (1) Å] Nb⋯Nb distances alternate along the chains, and S and S2− anionic species co‐exist in the structure. The Ag+ cation lies on an inversion centre and has distorted octahedral coordination described as a [2+4]‐bonding interaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号