首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We demonstrate the first cavity-enhanced optical frequency comb spectroscopy in the mid-infrared wavelength region and report the sensitive real-time trace detection of hydrogen peroxide in the presence of a large amount of water. The experimental apparatus is based on a mid-infrared optical parametric oscillator synchronously pumped by a high-power Yb:fiber laser, a high-finesse broadband cavity, and a fast-scanning Fourier transform spectrometer with autobalancing detection. The comb spectrum with a bandwidth of 200 nm centered around 3.76 μm is simultaneously coupled to the cavity and both degrees of freedom of the comb, i.e. the repetition rate and carrier envelope offset frequency, are locked to the cavity to ensure stable transmission. The autobalancing detection scheme reduces the intensity noise by a factor of 300, and a sensitivity of 5.4×10?9 cm?1?Hz?1/2 with a resolution of 800 MHz is achieved (corresponding to 6.9×10?11 cm?1?Hz?1/2 per spectral element for 6000 resolved elements). This yields a noise equivalent detection limit for hydrogen peroxide of 8 parts-per-billion (ppb); in the presence of 2.8 % of water the detection limit is 130 ppb. Spectra of acetylene, methane, and nitrous oxide at atmospheric pressure are also presented, and a line-shape model is developed to simulate the experimental data.  相似文献   

2.
High frequency wavelength modulation spectroscopy with diode lasers is accomplished by dithering the drive current at RF frequencies as high as 250 MHz. This technique is useful for fast and sensitive detection of absorption lines in the near-and mid-infrared spectral regions. Detection of 300 MHz wide spectral features corresponding to 1% changes in transmission is accomplished in time intervals as short as 500 ns. A potential application is for fast reading of information contained in frequency domain optical memories based upon photochemical hole burning.  相似文献   

3.
A 125 MHz fiber-based frequency comb source in the mid-infrared wavelength region is presented. The source is based on difference frequency generation from a polarization-maintaining Er-doped fiber pump laser and covers a spectrum between2900 cm~(-1) and 3400 cm~(-1) with a simultaneous bandwidth of 170 cm~(-1) and an average output power up to 70 m W. The source is equipped with actuators and active feedback loops, ensuring long-term stability of the repetition rate, output power, and spectral envelope. An absorption spectrum of ethane and methane was measured using a Fourier transform spectrometer to verify the applicability of the mid-infrared comb to multispecies detection. The robustness and good long-and short-term stability of the source make it suitable for optical frequency comb spectroscopy of hydrocarbons.  相似文献   

4.
We characterize a new mid-infrared frequency comb generator based on difference frequency generation around 3.1 μm. High power per comb mode (>10?7 W/mode) is obtained over a broad spectral span (>750 nm, >790 cm?1). The source is used for direct absorption spectroscopy with a Michelson-based Fourier transform interferometer.  相似文献   

5.
徐琴芳  尹默娟  孔德欢  王叶兵  卢本全  郭阳  常宏 《物理学报》2018,67(8):80601-080601
提出一种结合注入锁定技术的主动滤波放大方法,将光梳直接注入锁定至光栅外腔半导体激光器,产生窄线宽激光光源,该光源可以用于锶原子光钟二级冷却.实验中,将中心波长为689 nm,带宽为10 nm的光梳种子光源注入689 nm光栅式外腔半导体激光器,通过半导体增益光谱与半导体光栅外腔,从飞秒光梳的多个纵模梳齿中挑选出一个纵模模式来进行增益放大,再通过模式竞争,实现单纵模连续光输出;同时,光梳的重复频率锁定在线宽为赫兹量级的698 nm超稳激光光源上,因此,注入锁定后输出的窄线宽激光也继承了超稳激光光源的光谱特性.利用得到的输出功率为12 mW的689 nm窄线宽激光光源实现了88Sr原子光钟的二级冷却过程,最终获得温度为3μK,原子数约为5×10~6的冷原子团.该方法可拓展至原子光钟其他光源的获得,从而实现原子光钟的集成化和小型化.  相似文献   

6.
We report the generation of tunable high-repetition-rate optical pulses in the mid-infrared using synchronously pumped parametric oscillation in periodically poled LiNbO3 (PPLN). Using a Kerr-lens-mode-locked Ti:sapphire laser as the pump source and a PPLN crystal incorporating grating periods of 21.0–22.4 μm, we have achieved wavelength conversion in the -–4 6μm spectral range in the mid-infrared. The use of a semi-monolithic cavity design and hemispherical focusing has permitted pulse generation in the strong idler absorption region of PPLN, resulting in a simple, compact, all-solid-state configuration with a pump power threshold as low as 17 mW and mid-infrared idler powers of up to 64 mW at 9% extraction efficiency. Signal output powers of up to 280 mW at 35% extraction efficiency are available over the -–1.004 1.140μm spectral range at 80.5 MHz and pulse repetition rates at harmonics of the fundamental frequency up to 322 MHz have also been obtained. Received: 5 December 2000 / Revised version: 23 January 2001 / Published online: 27 April 2001  相似文献   

7.
We present a detailed investigation of the noise properties of an optical frequency comb generated from a femtosecond diode-pumped solid-state laser operating in the 1.5-??m spectral region. The stabilization of the passively mode-locked Er:Yb:glass laser oscillator, referred to as ERGO, is achieved using pump power modulation for the control of the carrier envelope offset (CEO) frequency and by adjusting the laser cavity length for the control of the repetition rate. The stability and the noise of the ERGO comb are characterized in free-running and in phase-locked operation by measuring the noise properties of the CEO, of the repetition rate, and of a comb line at 1558?nm. The comb line is analyzed from the heterodyne beat signal with a cavity-stabilized ultra-narrow-linewidth laser using a frequency discriminator. Two different schemes to stabilize the comb to a radio-frequency (RF) reference are compared. The comb properties (phase noise, frequency stability) are limited in both cases by the RF oscillator used to stabilize the repetition rate, while the contribution of the CEO is negligible at all Fourier frequencies, as a consequence of the low-noise characteristics of the CEO-beat. A?linewidth of ??150?kHz and a fractional frequency instability of 4.2×10?13 at 1?s are obtained for an optical comb line at 1558?nm. Improved performance is obtained by stabilizing the comb to an optical reference, which is a cavity-stabilized ultra-narrow linewidth laser at 1558?nm. The fractional frequency stability of 8×10?14 at 1?s, measured in preliminary experiments, is limited by the reference oscillator used in the frequency comparison.  相似文献   

8.
Tunable Diode-Laser Absorption Spectroscopy (TDLAS) is increasingly being used to measure trace-gas concentrations down to low part-per-billion levels (1 ppbv = 10–9 volume mixing ratio). Semiconductor lead-salt diode lasers give access to the mid-infrared spectral region and the application of high-Frequency Modulation (FM) schemes can further improve the sensitivity and detection speed of modern instrumentation. Several factors influence or even limit spectrometer performance. The central elements in such spectrometers are lead-salt diode lasers. Experimental data will be presented, which demonstrate that high-frequency excess-noise contributions above several MHz can be attributed to mode hopping and mode partition noise during multimode laser operation. Additionally it will be discussed how a FM-TDLAS spectrometer can be interpreted as an optimized Michelson interferometer for absolute distance measurements and, therefore, is extremely sensitive towards drift effects. The higher the modulation frequency, the higher is the drift sensitivity of the spectrometer due to interferometric effects. These drift effects are a second factor affecting ultrasensitive measurements. While wideband-laser noise characteristics call for high modulation frequencies, the aforementioned interferometric effects in the spectrometer require low modulation frequencies.  相似文献   

9.
A narrow-linewidth comb-linked nonlinear source is used as master radiation to injection lock a room-temperature mid-infrared quantum cascade laser (QCL). This process leads to a direct lock of the QCL to the optical frequency comb, providing the unique features of narrow linewidth, absolute frequency, higher output power, and wide mode-hop-free tunability. The QCL reproduces the injected radiation within more than 94%, with a reduction of the frequency-noise spectral density by 3 to 4 orders of magnitude up to about 100 kHz, and a linewidth narrowing from a few MHz to 20 kHz.  相似文献   

10.
康鹏  孙羽  王进  刘安雯  胡水明 《物理学报》2018,67(10):104206-104206
利用高精细度光腔锁定激光频率,实现了对分子吸收光谱的高精度测量.光腔采用低热膨胀系数的殷钢结构设计和温度控制,实现了腔长度的稳定;通过将激光频率锁定在光腔纵模上,实现了高频率精度和高灵敏度的光腔衰荡光谱测量.利用该装置示范性地测量了二氧化碳分子在6470.42 cm~(-1)附近的光腔衰荡光谱和色散光谱,得到了高精度的谱线参数,并和数据库谱线参数进行了对比.  相似文献   

11.
The generation of cw-THz radiation by photomixing is particularly suited to the high resolution spectroscopy of gases; nevertheless, until recently, it has suffered from a lack of frequency metrology. Frequency combs are a powerful tool that can transfer microwave frequency standards to optical frequencies and a single comb has permitted accurate (10−8) THz frequency synthesis with a limited tuning range. A THz synthesizer composed of three extended cavity laser diodes phase locked to a frequency comb has been constructed and its utility for high resolution gas phase spectroscopy demonstrated. The third laser diode allows a larger tuning range of up to 300 MHz to be achieved without the need for large frequency excursions, while the frequency comb provides a versatile link to be established from any traceable microwave frequency standard. The use of a single frequency comb as a reference for all of the cw-lasers eliminates the dependency of synthesized frequency on the carrier envelope offset frequency. This greatly simplifies the frequency comb stabilization requirements and leads to a reduced instrument complexity.  相似文献   

12.
吴学健  尉昊赟  朱敏昊  张继涛  李岩 《物理学报》2012,61(18):180601-180601
利用光纤飞秒光频梳和外腔可调谐半导体激光器, 建立了一套双频He-Ne激光器频率测量系统. 选用铷钟作为系统的频率基准, 通过将外腔半导体激光锁定至光频梳使得其频率溯源至铷钟, 再利用外腔可调谐半导体激光与双频He-Ne激光器输出的正交偏振激光拍频, 同时测量两路正交偏振激光频率. 将可调谐半导体激光器锁定至光频梳第1894449个梳齿, 其绝对频率为473612190000.0±2.7 kHz, 相对不确定度为5.7×10-12. 对商品双频He-Ne激光器进行频率测量实验, 双频He-Ne激光器水平方向偏振激光频率均值为473612229934 kHz, 竖直方向偏振激光频率均值为473612232111 kHz, 平均时间为1024 s的相对Allan标准差为5.2×10-11, 频差均值为2.177 MHz, 标准偏差为2 kHz.  相似文献   

13.
We present a system for molecular spectroscopy using a broadband mid-infrared laser with near-infrared detection. Difference frequency generation of a Yb:fiber femtosecond laser produced a mid-infrared (MIR) source tunable from 2100–3700 cm−1 (2.7–4.7 μm) with average power up to 40 mW. The MIR spectrum was upconverted to near-infrared wavelengths for broadband detection using a two-dimensional dispersion imaging technique. Absorption measurements were performed over bandwidths of 240 cm−1 (7.2 THz) with 0.048 cm−1 (1.4 GHz) resolution, and absolute frequency scale uncertainty was better than 0.005 cm−1 (150 MHz). The minimum detectable absorption coefficient per spectral element was determined to be 4.4×10−7 cm−1 from measurements in low pressure CH4, leading to a projected detection limit of 2 parts-per-billion of methane in pure nitrogen. In a natural atmospheric sample, the methane detection limit was found to be 30 parts-per-billion. The spectral range, resolution, and frequency accuracy of this system show promise for determination of trace concentrations in gas mixtures containing both narrow and broad overlapping spectral features, and we demonstrate this in measurements of air and solvent samples.  相似文献   

14.
Ycas G  Osterman S  Diddams SA 《Optics letters》2012,37(12):2199-2201
We present a multibranch laser frequency comb based upon a 250 MHz mode-locked erbium-doped fiber laser that spans more than 300 THz of bandwidth, from 660 nm to 2100 nm. Light from a mode-locked Er:fiber laser is amplified and then broadened in highly-nonlinear fiber to produce substantial power at ~1050 nm. This light is subsequently amplified in Yb:fiber to produce 1.2 nJ, 73 fs pulses at 1040 nm. Extension of the frequency comb into the visible is achieved by supercontinuum generation from the 1040 nm light. Comb coherence is verified with cascaded f-2f interferometry and comparison to a frequency stabilized laser.  相似文献   

15.
This paper gives the first demonstration of high-power, continuously tunable, narrowband radiation that is produced by means of a free-electron laser (FEL) in the far-infrared region of the electromagnetic spectrum. A Fox-Smith intracavity étalon was used to induce phase coherence between the 40 optical micropulses that were circulating in the laser cavity. The corresponding phase-locked spectrum consisted of a comb of discrete frequencies separated by 1 GHz. A pair of external Fabry-Pérot étalons was used to filter out a single line from this spectrum. The power in the selected narrow line at 69 microm wavelength was equal to 250 mW during the macropulse of the laser. The spectral width of the selected line is as small as that of a single cavity mode, i.e., a fraction of 25 MHz, in single macropulses of the laser. The average bandwidth of 25 MHz is determined by mode hopping of the phase-locked FEL. The selected frequency hops over 25 MHz between the extrema of this band. The influence of partially coherent spontaneous emission and mode hopping on the final linewidth was studied. The narrow-linewidth radiation was scanned in frequency over 1 GHz. We show that the possibilities to scan over smaller or larger frequency intervals are unlimited.  相似文献   

16.
We achieve a quantum-noise-limited absorption sensitivity of 1.7×10(-12) cm(-1) per spectral element at 400 s of acquisition time with cavity-enhanced frequency comb spectroscopy, the highest demonstrated for a comb-based technique. The system comprises a frequency comb locked to a high-finesse cavity and a fast-scanning Fourier transform spectrometer with an ultralow-noise autobalancing detector. Spectra with a signal-to-noise ratio above 1000 and a resolution of 380 MHz are acquired within a few seconds. The measured absorption line shapes are in excellent agreement with theoretical predictions.  相似文献   

17.
We combined a tunable continuous-wave optical parametric oscillator and a femtosecond Ti:sapphire laser frequency comb to provide a phase-coherent bridge between the visible and the mid-infrared spectral ranges. As a first demonstration of this new technique we performed a direct frequency comparison between an iodine-stabilized Nd:YAG laser at 1064 nm and an infrared methane optical frequency standard at 3.39 microm.  相似文献   

18.
光频梳因频率等间隔、波长稳定、谱线线宽窄以及谱宽大等特性,在高精度测量和计量中具有广泛的应用。其中,双光梳快速测量包括光谱测量、绝对测距、三维成像和超快异步光学采样等已成为研究热点之一。近年来,基于自由运行的单腔双光梳激光器的双梳光谱学系统由于具有结构简单、测量范围大和精度高等优点而备受关注。首先从时域和频域介绍了光频梳的特性和应用,尤其介绍了双光梳测量的优势,相较目前主流的稳频稳相锁模激光器、电光调制等双光梳光源实现方案,单腔双光梳激光器方案有望避免采用复杂的电子控制系统,简化双光梳光源的结构、体积和成本。因此,重点介绍了波长复用、偏振复用、空间复用和脉冲波形复用的单腔双光梳光纤激光器实现技术,并对其基本原理、性能参数和当前研究的进展以及目前发展中仍然存在的问题进行了分析;同时对保偏光纤双光梳激光器的研究现状及其性能进行了总结。接着,重点介绍了双梳光谱学的测量原理,回顾了现有光谱扩展技术,并详细介绍了基于自由运行的单腔双光梳激光器的双梳光谱学应用案例,包括掺铒光纤激光器所在的近红外波段以及其扩展到中红外和太赫兹波段的光谱探测。最后,总结了目前的单腔双光梳激光器的主要发展趋势,包括进一步提高单腔型双光梳激光腔的重频稳定性、降低共模噪声、探索单腔双光梳系统在中红外以及太赫兹波段的应用,推动单腔双光梳锁模光纤激光器的实用化。  相似文献   

19.
Shiying Cao 《中国物理 B》2022,31(7):74207-074207
Femtosecond optical frequency combs correlate the microwave and optical frequencies accurately and coherently. Therefore, any optical frequency in visible to near-infrared region can be directly traced to a microwave frequency. As a result, the length unit "meter" is directly related to the time unit "second". This paper validates the capability of the national wavelength standards based on a home-made Er-doped fiber femtosecond optical frequency comb to measure the laser frequencies ranging from visible to near-infrared region. Optical frequency conversion in the femtosecond optical frequency comb is achieved by combining spectral broadening in a highly nonlinear fiber with a single-point frequency-doubling scheme. The signal-to-noise ratio of the beat notes between the femtosecond optical frequency comb and the lasers at 633, 698, 729, 780, 1064, and 1542 nm is better than 30 dB. The frequency instability of the above lasers is evaluated by using a hydrogen clock signal with a instability of better than 1×10-13 at 1-s averaging time. The measurement is further validated by measuring the absolute optical frequency of an iodine-stabilized 532-nm laser and an acetylene-stabilized 1542-nm laser. The results are within the uncertainty range of the international recommended values. Our results demonstrate the accurate optical frequency measurement of lasers at different frequencies using the femtosecond optical frequency comb, which is not only important for the precise and accurate traceability and calibration of the laser frequencies, but also provides technical support for establishing the national wavelength standards based on the femtosecond optical frequency comb.  相似文献   

20.
The absolute frequencies of 39 lines in the 0002-0000, 2001-0000, and 1201-0000 bands of N2O in the range 4300–4800 cm?1 have been measured by heterodyne frequency techniques. The lines were each measured in Doppler-limited absorption, with a color-center laser as a tunable probe of the N2O and two stabilized CO2 lasers as reference frequencies. New rovibrational constants have been fitted to these measurements. Tables of calculated transition frequencies are given, with estimated absolute uncertainties as small as 10?4 cm?1. The pressure shifts of four lines have been measured, and the values fall within the range of 0 to ?2 MHz/kPa (0 to ?0.2 MHz/Torr).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号