首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summer and winter climates simulated with the ECMWF (cycle 33) model at spectral scales T21, T42, T63 and T106 are analyzed to determine the impact of changes in horizontal resolution on atmospheric water vapor, clouds, convection, and precipitation. Qualitative changes in many moist processes occur in the transition from T21 to T42, especially in the tropics; at higher resolutions mostly incremental variations from patterns established at T42 result. Large-scale tropical moist processes are simulated more realistically at T21 than at finer resolutions, possibly reflecting a mismatch between the finer-scale dynamics and the scales at which the underlying assumptions of the physical parameterizations apply. Global precipitation increases monotonically with resolution, as a consequence of increasing convection. Global cloud cover, however, decreases in the transition from T21 to T42 due to drying of the tropics, but then increases slightly at finer resolutions. These small global increases are an outcome of compensating changes in different regions: decreases in cloud cover due to drying of the atmosphere at low latitudes are offset by high-latitude increases resulting from enhanced relative humidity associated with an intensifying atmospheric cold bias at finer resolutions.  相似文献   

2.
Comprehensive diagnostic comparisons and evaluations have been carried out with the National Centers for Environmental Prediction/National Center for Atmospheric Research (NCEP/NCAR) and European Centre for Medium Range Weather Forecasts (ECMWF) reanalyses of the vertically integrated atmospheric energy budgets. For 1979 to 1993 the focus is on the monthly means of the divergence of the atmospheric energy transports. For February 1985 to April 1989, when there are reliable top-of-the-atmosphere (TOA) radiation data from the Earth Radiation Budget Experiment (ERBE), the implied monthly mean surface fluxes are derived and compared with those from the assimilating models and from the Comprehensive Ocean Atmosphere Data Set (COADS), both locally and zonally integrated, to deduce the implied ocean meridional heat transports. While broadscale aspects and some details of both the divergence of atmospheric energy and the surface flux climatological means are reproducible, especially in the zonal means, differences are also readily apparent. Systematic differences are typically ∼20 W m−2. The evaluation highlights the poor results over land. Land imbalances indicate local errors in the divergence of the atmospheric energy transports for monthly means on scales of 500 km (T31) of 30 W m−2 in both reanalyses and ∼50 W m−2 in areas of high topography and over Antarctica for NCEP/NCAR. Over the oceans in the extratropics, the monthly mean anomaly time series of the vertically integrated total energy divergence from the two reanalyses correspond reasonably well, with correlations exceeding 0.7. A common monthly mean climate signal of about 40 W m−2 is inferred along with local errors of 25 to 30 W m−2 in most extratropical regions. Except for large scales, there is no useful common signal in the tropics, and reproducibility is especially poor in regions of active convection and where stratocumulus prevails. Although time series of monthly anomalies of surface bulk fluxes from the two models and COADS agree very well over the northern extratropical oceans, the total fields all contain large systematic biases which make them unsuitable for determining ocean heat transports. TOA biases in absorbed shortwave, outgoing longwave and net radiation from both reanalysis models are substantial (>20 W m−2 in the tropics) and indicate that clouds are a primary source of problems in the model fluxes, both at the surface and the TOA. Time series of monthly COADS surface fluxes are shown to be unreliable south of about 20N where there are fewer than 25 observations per 5 square per month. Only the derived surface fluxes give reasonable implied meridional ocean heat transports. Received: 21 March 2000 / Accepted: 21 June 2000  相似文献   

3.
We investigate the ability of a global atmospheric general circulation model (AGCM) to reproduce observed 20 year return values of the annual maximum daily precipitation totals over the continental United States as a function of horizontal resolution. We find that at the high resolutions enabled by contemporary supercomputers, the AGCM can produce values of comparable magnitude to high quality observations. However, at the resolutions typical of the coupled general circulation models used in the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, the precipitation return values are severely underestimated.  相似文献   

4.
In this paper we consider temperature (% MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGafuiMdeLbae% baaaa!377B!\[\bar \Theta \]) and specific humidity (% MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmyuayaara% aaaa!36DA!\[\bar Q\]) fields in the lower part of the planetary boundary layer and present a method for calculating the way these variables and their fluxes vary over changes in available surface moisture expressed as a surface resistance. Near the surface, the turbulence is close to equilibrium and an eddy diffusivity model enables the changes in (% MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGafuiMdeLbae% baaaa!377B!\[\bar \Theta \]), % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmyuayaara% aaaa!36DA!\[\bar Q\], sensible heat flux (% MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOrayaara% WaaSbaaSqaaiaadIeaaeqaaaaa!37C8!\[\bar F_H \]), and latent heat flux (% MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOrayaara% WaaSbaaSqaaiaadweaaeqaaaaa!37C5!\[\bar F_E \]) to be determined in terms of the assumed mean wind, turbulence profiles and upwind profiles of temperature and humidity. An important advantage of this method is that it is possible to consider arbitrary changes in surface properties.  相似文献   

5.
V. Pope  R. Stratton 《Climate Dynamics》2002,19(3-4):211-236
  相似文献   

6.
The current literature provides compelling evidence suggesting that an eddy-resolving (as opposed to eddy-permitting or eddy-parameterized) ocean component model will significantly impact the simulation of the large-scale climate, although this has not been fully tested to date in multi-decadal global coupled climate simulations. The purpose of this paper is to examine how resolved ocean fronts and eddies impact the simulation of large-scale climate. The model used for this study is the NCAR Community Climate System Model version 3.5 (CCSM3.5)—the forerunner to CCSM4. Two experiments are reported here. The control experiment is a 155-year present-day climate simulation using a 0.5° atmosphere component (zonal resolution 0.625 meridional resolution 0.5°; land surface component at the same resolution) coupled to ocean and sea-ice components with zonal resolution of 1.2° and meridional resolution varying from 0.27° at the equator to 0.54° in the mid-latitudes. The second simulation uses the same atmospheric and land-surface models coupled to eddy-resolving 0.1° ocean and sea-ice component models. The simulations are compared in terms of how the representation of smaller scale features in the time mean ocean circulation and ocean eddies impact the mean and variable climate. In terms of the global mean surface temperature, the enhanced ocean resolution leads to a ubiquitous surface warming with a global mean surface temperature increase of about 0.2?°C relative to the control. The warming is largest in the Arctic and regions of strong ocean fronts and ocean eddy activity (i.e., Southern Ocean, western boundary currents). The Arctic warming is associated with significant losses of sea-ice in the high-resolution simulation. The sea surface temperature gradients in the North Atlantic, in particular, are better resolved in the high-resolution model leading to significantly sharper temperature gradients and associated large-scale shifts in the rainfall. In the extra-tropics, the interannual temperature variability is increased with the resolved eddies, and a notable increases in the amplitude of the El Ni?o and the Southern Oscillation is also detected. Changes in global temperature anomaly teleconnections and local air-sea feedbacks are also documented and show large changes in ocean–atmosphere coupling. In particular, local air-sea feedbacks are significantly modified by the increased ocean resolution. In the high-resolution simulation in the extra-tropics there is compelling evidence of stronger forcing of the atmosphere by SST variability arising from ocean dynamics. This coupling is very weak or absent in the low-resolution model.  相似文献   

7.
8.
An ocean general circulation model of global domain, full continental geometry and bottom topography, is used to study the influence of the Bering Strait on the general circulation by comparing equilibrium solutions obtained with and without a land-bridge between Siberia and Alaska. The model is integrated with restoring boundary conditions (BC) on temperature and salinity, and later, with mixed BC in which a restoring BC on temperature is maintained but a specified flux condition on salinity is imposed. In both cases, the effect of the Bering Strait is to allow a flow of about 1.25–1.5 Sv from the North Pacific to the Arctic Ocean and, ultimately, back to the North Pacific along the western boundary current regions of the Atlantic and Indian Oceans. When a restoring BC on salinity is used, the overturning associated with North Atlantic Deep Water and Antarctic Intermediate Water formation are increased if the Bering Strait is present in the model geometry. The result of switching to a specified flux BC on salinity is to cause a transition in the THC in which the overturning associated with North Atlantic Deep Water formation increases from about 12 Sv to about 22 Sv. This transition occurs in an essentially smooth fashion with no significant variability and is about 12% smaller in magnitude if the Bering Strait is present in the model geometry. Because the Bering Strait appears to exert some influence on the general circulation and the formation of deep water masses, it is recommended that this Strait be included in the geometry of similar resolution models designed to study the deep ocean and potential changes in climate. Correspondence to: CJC Reason  相似文献   

9.
To determine whether resolution of smaller scales is necessary to simulate large-scale ocean climate correctly, I examine results from a global ocean GCM run with different horizontal grid spacings. The horizontal grid spacings span a range from coarse resolutions traditionally used in climate modeling to nearly the highest resolution attained with today's computers. The experiments include four cases employing 4°, 2°, 1° and 1/2° spacing in latitude and longitude, which were run with minimal differences among them, i.e., in a controlled experiment. Two additional cases, 1/2° spacing with a more scale-selective sub-gridscale mixing of heat and momentum, and approximate 1/2° spacing, are also included. The 1/2° run resolves most of the observed mesoscale eddy energy in the ocean. Artificial constraints on the model tend to minimize differences among the different resolution cases. Nevertheless, the simulations show significant changes as resolution increases. These changes generally but not always bring the model into better agreement with observations. Differences are typically more noticeable when comparing the 4° and 2° runs than when comparing the 2° and 1° runs or the 1° and 1/2° runs. A reasonable conclusion to draw for current studies with coupled ocean-atmosphere GCMs is that the ocean grid spacing could be set to about 1° to accrue the benefits of enhanced resolution without paying an excessively steep price in computer-time cost. The model's poleward heat transport at 1/2° grid spacing peaks at about 1 × 1015 W in the Northern Hemisphere and 0.5 × 1015 W in the Southern Hemisphere. These values are significantly below observations, a problem typical of ocean GCMs even when they are less constrained than in the present study. This present problem is alleviated somewhat in the 1/2° run. In this case, however, the eddies resolved by the model generally act to counter rather than to reinforce the heat transport of the mean flow. Improved heat transport may result less from enhanced resolution than from other changes made in this version of the model, such as more accurate wind forcing.  相似文献   

10.
 We present simulations performed with a three dimensional global ocean general circulation model which show that simulated salinities and amounts of convective mixing are very sensitive to vertical mixing of surface buoyancy fluxes. If, as usual, surface buoyancy fluxes are placed entirely in the topmost model level, our model produces excessive convective mixing in the Southern Ocean. This results in poor stimulated salinity in the Southern Ocean. In this simulation, we assume, as usual, that both surface buoyancy forcing and vertical mixing are homogeneous within each grid cell. If, on the other hand, destabilizing surface fluxes are instantaneously mixed into the subsurface ocean, the model produces much less convective mixing and much more realistic salinities. The vertical mixing of surface buoyancy fluxes performed in this simulation is equivalent to assuming that those fluxes affect only a small fraction of each grid cell, and cause vertical mixing only in that limited area. Our interpretation of these results is that the usual assumption that both surface buoyancy forcing and vertical mixing are uniform within each grid cell has a detrimental effect on model results; these results could be significantly improved by good parametrizations which treat the horizontal inhomogeneity of surface buoyancy forcing and of vertical mixing. Received: 25 February 1998 / Accepted: 9 September 1998  相似文献   

11.
利用ETM+及少量地面观测数据,基于SEBAL模型,反演了武汉市2002年7月22日的显热通量和潜热通量。研究结果表明:显热通量和潜热通量的分布与下垫面类型分布相对应,其中城镇、工矿下垫面以显热交换为主,草地、林地、水体等下垫面以潜热交换为主;显热通量和潜热通量的分布能够清晰指示城市热岛分布状况,适当增加城区中绿地和水体,可增大潜热通量,减缓城市热岛效应。  相似文献   

12.
模式的水平分辨率对暴雨预报的影响   总被引:1,自引:0,他引:1  
匡本贺  冯光柳 《大气科学》1989,13(4):497-501
研究表明:采用以常规的气象观测网获得的资料作模式的初值,若适当提高模式的水平分辨率,可明显地改进预报结果。它不仅可提高梅雨锋上中尺度对流系统发生、发展过程的模拟能力,同时还能改进暴雨落区的预报准确性。  相似文献   

13.
为探讨ECMWF业务预报模式(以下简称ECMWF)的地面气温预报不一致性问题,本文利用2015年12月1日—2016年11月30日业务预报中常用的地面气温预报数据,研究ECMWF地面气温预报产品在不同季节里的不一致性指数分布及变化特征。结果表明:各个季节不一致性指数有不同的特点,冬季不一致性指数最大,大值区主要分布在除华南和青藏高原外的大部分区域;而夏季不一致性指数最小,在青藏高原地区不一致性指数相对较大;春、秋两季不一致性指数大小均处于冬、夏季之间。此外,研究还发现冬季地面气温预报不一致性指数单日变化较大,而夏季较小。夏季不同起报时间的地面气温预报比较稳定。  相似文献   

14.
15.
This study documents the variability of surface sensible and latent heat fluxes in five regions of China (Northwest China, the Tibetan Plateau, Northeast China, North China, and Southeast China) using the ERA-40 reanalysis for the years 1960–2000. The surface sensible and latent heat flux variations are remarkably different in Northwest and Southeast China. The seasonal variation of the surface sensible heat fluxes is largest in Northwest China and smallest in Southeast China. In contrast, the seasonal variation in latent heat flux is largest in Southeast China and smallest in Northwest China. The interdecadal variation of surface sensible and surface latent heat fluxes strongly depends on both the region and season. The trends in surface sensible and latent heat fluxes in all four seasons are mainly caused by variations in both the land–air temperature difference and in the specific humidity. There is also a limited contribution of wind speed in some regions, depending on the season.  相似文献   

16.
Direct measurements of sensible heat fluxes were conducted over a grass surface at Ladner, British Columbia, using yaw-sphere-thermometer eddy-correlation systems. The results show that for half-hour averaging periods, there is no phase-lag between sensible heat and net radiation flux densities. Field comparison of two yaw-sphere-thermometer systems gave good and consistent agreement. At a height of 2 m above ground and a horizontal crosswind separation of 1.5 m, less than 5% variability was noted in the measured heat fluxes. For a 19-m horizontal separation, the variability was less than 20%. The aridity index (α) advanced by Priestley and Taylor (1972), is shown to be a potentially useful climatic indicator.  相似文献   

17.
In response to increasing atmospheric concentrations of greenhouse gases, the rate of time-dependent climate change is determined jointly by the strength of climate feedbacks and the efficiency of processes which remove heat from the surface into the deep ocean. This work examines the vertical heat transport processes in the ocean of the HADCM2 atmosphere–ocean general circulation model (AOGCM) in experiments with CO2 held constant (control) and increasing at 1 per year (anomaly). The control experiment shows that global average heat exchanges between the upper and lower ocean are dominated by the Southern Ocean, where heat is pumped downwards by the wind-driven circulation and diffuses upwards along sloping isopycnals. This is the reverse of the low-latitude balance used in upwelling–diffusion ocean models, the global average upward diffusive transport being against the temperature gradient. In the anomaly experiment, weakened convection at high latitudes leads to reduced diffusive and convective heat loss from the deep ocean, and hence to net heat uptake, since the advective heat input is less affected. Reduction of deep water production at high latitudes results in reduced upwelling of cold water at low latitudes, giving a further contribution to net heat uptake. On the global average, high-latitude processes thus have a controlling influence. The important role of diffusion highlights the need to ensure that the schemes employed in AOGCMs give an accurate representation of the relevant sub-grid-scale processes. Received: 8 July 1999 / Accepted: 17 November 1999  相似文献   

18.
The effect of the high frequency (synoptic) variability of wind and heat fluxes upon the surface ocean off south-central Chile (west coast of South America) is investigated using a regional ocean model. We focus our analysis in austral summer, when the regional wind experiences significant day-to-day variability superimposed on a mean, upwelling favorable flow. To evaluate the nature and magnitude of these effects, we performed three identical simulations except for the surface forcing: the climatological run, with long-term monthly mean wind-stresses and heat fluxes; the wind-synoptic run, with daily wind stresses and climatological heat fluxes; and the full-synoptic run, with daily wind-stresses and daily fluxes. The mean currents and surface geostrophic EKE fields show no major differences between simulations, and agree well with those observed in this ocean area. Nevertheless, substantially more ageostrophic EKE is found in the simulations which include synoptic variability of wind-stresses, impacting the total surface EKE and diffusivities, particularly south of Punta Lavapie (37° S), where the lack of major currents implies low levels of geostrophic EKE. Summer mean SSTs are similar in all simulations and agree with observations, but SST variability along the coast is larger in the runs including wind-stress synoptic variability, suggesting a rather linear response of the ocean to cycles of southerly wind strengthening and relaxation. We found that coastal SST variability does not change significantly in the first tenths of kilometers from the shore when including daily heat fluxes, highlighting the prominent role of wind-driven upwelling cycles. In contrast, in the offshore region situated beyond the 50 km coastal strip, it is necessary to include synoptic variability in the heat fluxes to account for a realistic SST variability.  相似文献   

19.
以1992-04-01T12(GMT)北京国家气象中心的客观分析资料为初始场,通过对比分析CCM1(R15L7)模式的月数值预报结果,研究了谱模式在不同截断方式下,水平分辨率及网格结构分地月长期烽值预报的影响。结果表明:虽然以上两模式具有相同的垂直结构,以及相近的高斯网格格点数和计算量,但由于R15L7较T21L7有更为合理的水平分辨率分布,具有由高纬长方形(长轴为南北向)经中纬正方形到低纬长方形  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号