首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To accurately predict impact loads can ensure the safe operation of debris flow control projects. The instantaneous impact process is usually considered in the calculation of the debris flow impact force; however, the redistribution of an impact load after structural regulation is unclear. In this study we deduced the theoretical calculation of a debris flow impact on a double-row slit dam, and carried out a verification experiment on the debris flow impact.The calculation model considers the in...  相似文献   

2.
Conventionally, flexible barriers are rated based on their ability to resist a free-falling boulder with a particular input energy. However, there is still no well-accepted approach for evaluating performance of flexible barrier under debris flow impact. In this study, a large-nonlinear finite-element model was used to back-analyze centrifuge tests to discern the effects of impact material type, barrier stiffness, and flow aspect ratio(flow height to flow length) on the reaction force between the impacting medium and flexible barrier. Results show that, in contrast to flexible barriers for resisting rockfall, the normal impact force induced by the highly frictional and viscous debris is insensitive to barrier stiffness. This is because the elongated distributions of kinetic energy are mainly dissipated by the internal and boundary shearing, and only a small portion is forwarded to the barrier. Furthermore, a new stiffness number is proposed to characterize the equivalent stiffness between a debris flow or a boulder, and a flexible barrier. Under the circumstance of an extremely elongated debris flow event, i.e., low aspect ratio, the load on a barrier is dominated by the static component and thus not sensitive to the barrier stiffness.  相似文献   

3.
Measuring the internal velocity of debris flows is very important for debris flow dynamics research and designing debris flow control works. However, there is no appropriate method for measuring the internal velocity because of the destructive power of debris flow process. In this paper, we address this problem by using the relationship between velocity and kinetic pressure, as described by surface velocity and surface kinetic pressure data. Kinetic pressure is the difference of impact pressure and static pressure. The former is detected by force sensors installed in the flow direction at the sampling section. Observations show that static pressure can be computed using the formula for static water pressure by simply substituting water density for debris flow density. We describe the relationship between surface velocity and surface kinetic pressure using data from seven laboratory flume experiments. It is consistent with the relationship for single phase flow, which is the measurement principle of the Pitot tube.  相似文献   

4.
5.
Discrete element modeling of debris avalanche impact on retaining walls   总被引:2,自引:0,他引:2  
In China,gravity retaining walls are widely used as protection structures against rockfalls,debris flows and debris avalanches along the roads in mountainous areas.In this paper,the Discrete Element Method(DEM) has been used to investigate the impact of granular avalanches and debris flows on retaining walls.The debris is modeled as two dimensional circular disks that interact through frictional sliding contacts.The basic equations that control the deformation and motion of the particles are introduced.A series of numerical experiments were conducted on an idealized debris slide impacting a retaining wall.The parametric study has been performed to examine the influences of slope geometry,travel distance of the sliding mass,wall position,and surface friction on the impact force exerted on the wall.Results show that:1) the force achieves its maximum value when slope angle is equal to 60°,as it varies from 30° to 75°;2) an approximate linear relationship between the impact force and the storage area length is determined.  相似文献   

6.
Experimental study on the viscoelastic behaviors of debris flow slurry   总被引:1,自引:0,他引:1  
The rheological properties of most liquid in nature are between liquids and solids,including both elastic changes and viscosity changes,that is socalled "viscoelastic".Dynamic oscillatory test was used to quantitatively study the distinct viscoelastic behaviors of debris flow slurry in the shear stress conditions for the first time in this study.The debris flow slurry samples were from Jiangjiagou Ravine,Yunnan Province,China.The experimental results were found that at the low and middle stages of shearing,when the angular velocity ω<72.46 s-1,the loss modulus(G") was greater than the storage modulus(G’),i.e.G">G’.At the late stage of shearing,when the angular velocity ω≧72.46 s-1,the storage modulus was greater than or equal to the loss modulus,i.e.G’≧G",tanδ≦1(where phase-shift angleδ=G"/G’),and the debris flow slurry was in a gel state.Therefore,the progress of this experimental study further reveals the mechanism of hyperconcentrated debris flows with a high velocity on low-gradient ravines.  相似文献   

7.
《山地科学学报》2021,18(8):2120-2129
The quadratic rheology model considers the yield stress, viscous stress, turbulent stress and disperse stress, so it is used in this study to derive the velocity profile of debris flows. The quadratic model with the parabolic eddy viscosity was numerically solved, and an analytical solution was derived for the quadratic model with a constant eddy viscosity. These two solutions were compared with the Arai-Takahashi model that excluded the viscous stress and the yield stress. The three models were tested by using 17 experiment cases of debris flows over rigid beds. The results prove that the quadratic model with parabolic and constant eddy viscosities is applicable to muddy and granular flows, whereas the Arai-Takahashi model tends to overestimate the flow velocity near the water surface if a plug-like layer exists. In addition, the von Karman constant and the zero-velocity elevation in the three models are related to sediment concentration. The von Karman constant decreases first and then increases as the sediment concentration increases. The zero-velocity elevation is below the bed surface, likely due to the invalidity of the non-slip boundary condition for the debris flows over fixed beds.  相似文献   

8.
Natural consolidation characteristics of viscous debris flow deposition   总被引:1,自引:0,他引:1  
Pore water pressure and water content are important indicators to both deposition and consolidation of debris flows, enabling a direct assessment of consolidation degree. This article gained a more comprehensive understanding about the entire consolidation process and focused on exploring pore water pressure and volumetric water content variations of the deposit body during natural consolidation under different conditions taking the viscous debris flow mass as a study subject and by flume experiments. The results indicate that, as the color of the debris changed from initial dark green to grayish-white color, the initial deposit thickness declined by 3% and 2.8% over a permeable and impermeable sand bed, respectively. A positive correlation was observed between pore water pressure and depth in the deposit for both scenarios, with deeper depths being related to greater pore water pressure. For the permeable environment, the average dissipation rate of pore water pressure measured at depths of 0.10 m and 0.05 m were 0.0172 Pa/d and 0.0144 Pa/d, respectively, showing a positivechanging trend with increasing depth. Under impermeable conditions, the average dissipation rates at different depths were similar, while the volumetric water content in the deposit had a positive correlation with depth. The reduction of water content in the deposit accelerated with depth under impermeable sand bed boundary conditions, but was not considerably correlated with depth under permeable sand bed boundary conditions. However, the amount of discharged water from the deposit was greater and consolidation occurred faster in permeable conditions. This indicates that the permeability of the boundary sand bed has a significant impact on the progress of consolidation. This research demonstrates that pore water and pressure dissipations are present during the entire viscous debris consolidation process. Contrasting with dilute flows, pore pressure dissipation in viscous flows cannot be completed in a matter of minutes or even hours, requiring longer completion time — 3 to 5 days and even more. Additionally, the dissipation of the pore water pressure lagged the reduction of the water content. During the experiment, the dissipation rate fluctuated substantially, indicating a close relationship betweenthe dissipation process and the physical properties of broadly graded soils.  相似文献   

9.
Debris flows are typical two-phase flows, which commonly accompany erosion in mountainous areas, and may destroy bridge engineering by scouring. In this study, a physically-based two-phase model is applied for the simulation of debris flow scouring of bridge pier. In this model, the shear stress of debris flow on an erodible bed is considered to be a function of the solid shear stress, fluid shear stress, and volume fraction; accordingly, the erosion is incorporated into the two-phase model. Using a highaccuracy computational scheme based on the finite volume method, the model is employed for simulating a dynamic debris flow over an erodible bed. The numerical results are consistent with the experimental data, and verify the feasibility of the two-phase model. Moreover, a simple numerical test is performed to exhibit the fundamental behaviour of debris flow scouring of bridge pier, which shows that the degree of erosion on each side of the pier is higher compared to other areas. The scouring depth is influenced by the variations of solid volume fraction and velocity of debris flow and pier width.  相似文献   

10.
IIWr~IOWThesedimentarycharacteristicsofdebrisflowcanreflectthecompoSition,fluidtypeandsedimentaryprocess.ThescholarswhostudymoderndebrisfloWinChinagenerallyclassifydebrisflowbythemethodofviscositywithfloWpattern.SeveraltypicalschemesareshowninTable1,inwhichthemethodofunitweight(fluiddensityinunitvolumet/m3)isusedandfluidunitweightisthoughttobethedirectproPOSitiontotheviscosityofdebrisflow(Wu,1990).Ithasbeenprovedbyhydrcrmechacsthatnon-cohesivedebrisf1OwfollowsBagnoldgranular'flowmedel(B…  相似文献   

11.
The reclamation and utilization of debris flow waste-shoal land plays an important role in the mitigation and control of debris flow hazards, which thus contributes a lot to the exploitation of insufficient land resources in mountainous areas and the reduction of losses caused by debris flow. The aim of this paper is to discuss the features and mechanism of soil evolution of debris flow waste-shoal land so as to search for the available modes of its reclamation and utilization. The Jiangjiagou Ravine, a typical debris flow ravine, was selected to study soil evolution features of debris flow waste-shoal land based on the analysis of soil physieochemical properties and soil microstructure. It was found that the soil evolution rates of debris flow waste-shoal land varied with different modes of reclamation. For the land which had been reclaimed for less than lO years, soil evolved most rapidly in paddy fields, and more rapidly in dry farmland than in naturally restored waste-shoal land. For the land which had been used for more than lo years, the soil evolution rates of dry farmland, naturally restored waste-shoal land and paddy farmland decreased in the file. For the same utilization period of time, significant differences were recognized in soil evolution features under different modes of reclamation. Analysis data showed that soil clay content, soil thickness, the psephicity of skeleton particles and contents of microaggregates (〈0.02 mm) in paddy farmland were all highest. Soil nutrients and porosity of dry farmland were better than those of paddy farmland and naturally restored waste-shoal land, and those of paddy farmland were superior to those of naturally restored waste-shoal land. Paddy farmland characterized by rapid pedogenesis, stable evolution and high utilizability was the priority candidate for the reclamation and utilization of debris flow waste -shoal land.  相似文献   

12.
Impact force is a crucial factor to be considered in debris-resisting structure design. The impact of debris flow against a structural barrier depends not only on the flow dynamics but also on the barrier material. Based on the structural vibration equation and energy conservation law, a simple model for calculating debris-flow impact pressure is proposed, which includes the mechanical impedance of the material, debris-flow velocity and Froude number. Twenty-five impact tests have been conducted using different kinds of materials: steel, black granite, white granite, marble and polyvinyl chloride (PVC) board, and the ratio of the maximum impact time to the vibration period of the structure is determined for the model. It is found that the ratio’s square root shows a linear relationship with the material solid Froude number. This indicates that the impedance of the structures plays an important role in the flow-barrier interaction. Moreover, the debrisflow impact force is found to decrease with the travel time of the elastic stress wave though the structures.  相似文献   

13.
Large spoil tips from reconstruction works as a result of the Wenchuan Earthquake in China are new debris flow hazards to the human society. However, there is a lack of detailed comparative study on debris flow initiation in different spoil materials. This paper describes a series of tests and analyses on debris flow characteristics (initiation, scale and mechanism) at six sites with limestone and sandstone materials near the Dujiangyan area. Research shows the limestone spoil contains debris flow prone clay content with high concentration of montmorillonite (highly expandable). In addition, limestone spoil is of such a low permeability that water mainly concentrates in the upper surface layer. Those factors make it easy for the increase of pore water pressure, decline of internal friction and conhesion force, leading to the occurence of large debris flows. In contrast, the sandstone spoil is less problematic and causes no major debris flow threats. Based on our research on the mechanism, the“stereometric drainage”method is sucessfully applied to control limestone spoil debris flows.  相似文献   

14.
Debris flows form deposits when they reach an alluvial fan until they eventually stop.However,houses located in the alluvial fan might affect the debris flow flooding and deposition processes.Few previous studies have considered the effects of houses on debris flow flooding and deposition.This study conducted model experiments and numerical simulations using the Kanako2D debris flow simulator to determine the influence of houses on debris flow flooding and deposition.The model experiments showed that when houses are present,the debris flow spreads widely in the cross direction immediately upstream of the houses,especially when the flow discharge is large or the grain size is small.Houses located in the alluvial fan also influence the deposition area.The presence of houses led to flooding and deposition damage in some places and reduced the damage in others.The simulation also demonstrated the influence of houses.Both the model experiment and the simulation showed that houses change the flooding and deposition areas.  相似文献   

15.
A colluvial landslide in a debris flow valley is a typical phenomena and is easily influenced by rainfall. The direct destructiveness of this kind of landslide is small, however, if failure occurs the resulting blocking of the channel may lead to a series of magnified secondary hazards. For this reason it is important to investigate the potential response of this type of landslide to rainfall. In the present paper, the Goulingping landslide, one of the colluvial landslides in the Goulingping valley in the middle of the Bailong River catchment in Gansu Province, China, was chosen for the study. Electrical Resistivity Tomography (ERT), Terrestrial Laser Scanning (TLS), together with traditional monitoring methods, were used to monitor changes in water content and the deformation of the landslide caused by rainfall. ERT was used to detect changes in soil water content induced by rainfall. The most significant findings were as follows:(1) the water content in the centralupper part (0~41 m) of the landslide was greater than in the central-front part (41~84 m) and (2) there was a relatively high resistivity zone at depth within the sliding zone. The deformation characteristics at the surface of the landslide were monitored by TLS and the results revealed that rainstorms caused three types of deformation and failure: (1) gully erosion at the slope surface; (2) shallow sliding failure; (3) and slope foot erosion. Subsequent monitoring of continuous changes in pore-water pressure, soil pressure and displacement (using traditional methods) indicated that long duration light rainfall (average 2.22 mm/d) caused the entire landslide to enter a state of creeping deformation at the beginning of the rainy season. Shear-induced dilation occurred for the fast sliding (30.09 mm/d) during the critical failure sub-phase (EF). Pore-water pressure in the sliding zone was affected by rainfall. In addition, the sliding L1 parts of the landslide exerted a discontinuous pressure on the L2 part. Through the monitoring and analysis, we conclude that this kind of landslide may have large deformation at the beginning and the late of the rainy season.  相似文献   

16.
Due to the special condition of provenance and disaster environment after "5·12" Earthquake, the probability and conditions of the occurrence of gully debris flow change greatly after the event, which make it difficult to prevent disaster effectively. In this study the hydrological model of ground water table in loose sediment is established. According to infinite slope theory, the safety factor of deposits is defined as the ratio of resistance force to driving force. The starting condition of post-earthquake gully debris flow is clearly studied by analyzing the effects of rainfall intensity, seismic strength, slope gradient and mechanical properties on the balance of accumulation body. Then the formulas of rainfall and aftershock threshold for starting of gully debris flow are proposed, and an example is given to illustrate the effect of rainfall, aftershocks and their coupling action on a debris flow. The result shows the critical rainfall intensity decreases as the lateral seismic acceleration and channel gradient increases, while the critical intensity linearly increases as the friction angle increases.  相似文献   

17.
Debris flow can cause serious damages to roads, bridges, buildings and other infrastructures.Arranging several rows of deceleration baffles in the significant influence on the mobility and deposition characteristic of debris flow. The deposit amount first increased then decreased when the flow density rises,flow path can reduce the flow velocity and ensure better protection of life and property. In debris flow prevention projects, deceleration baffles can effectively reduce the erosion of the debris flow and prolong the running time of the drainage channel.This study investigated the degree to which a 6 m long flume and three rows of deceleration baffles reduce the debris flow velocity and affect the energy dissipation characteristics. The influential variables include channel slope, debris flow density, and spacing between baffle rows. The experimental results demonstrated that the typical flow pattern was a sudden increase in flow depth and vertical proliferation when debris flow flows through the baffles. Strong turbulence between debris flow and baffles can contribute to energy dissipation and decrease the kinematic velocity considerably. The results showed that the reduction ratio of velocity increased with the increase in debris flow density,channel slope and spacing between rows. Tests phenomena also indicated that debris flow density hasand the deposit amount of debris flow density of 1500kg/m~3 reached the maximum when the experimental flume slope is 12°.  相似文献   

18.
The impact effect of boulder within debris flow is the key factor contributing to peak impact as well as to the failure of debris flow control work. So accurate measuring and calculating the impact force of debris flow can ensure the engineering design strength. However, limited to the existing laboratory conditions and piezoelectric sensor performance, it is impossible, based on the conventional measurements, to devise a computing method for expressing a reliable boulder impact force. This paper has therefore designed a new measurement device according to the method of integrating Fiber Bragg grating (FBG) and reinforced concrete composite beam (RCB) for measuring the impact force of debris flows, i.e. mounting FBG on the axially stressed steel bar in the composite beam at regular intervals to monitor the steel strain. RCB plays the role of contacting debris flow and protecting FBG sensors. Taking this new device as the experimental object, drop testing is designed for simulating and reflecting the boulder impact force. In a series of impacting tests, the relationship between the peak dynamic strain value of the steel bar and the impact force is analyzed, and based on which, an inversion model that uses the steel bar strain as the independent variable is established for calculating the boulder impact force. The experimental results show that this new inversion model can determine the impact force value and its acting position with a system error of 18.1%, which can provide an experimental foundation for measuring the impact force of boulders within the debris flow by the new FBG-based device.  相似文献   

19.
Particle Image Velocimetry(PIV) technique was used to test the analogues of hyperconcentrated flow and dilute debris flow in an open flume. Flow fields, velocity profiles and turbulent parameters were obtained under different conditions. Results show that the flow regime depends on coarse grain concentration. Slurry with high fine grain concentration but lacking of coarse grains behaves as a laminar flow. Dilute debris flows containing coarse grains are generally turbulent flows. Streamlines are parallel and velocity values are large in laminar flows. However, in turbulent flows the velocity diminishes in line with the intense mixing of liquid and eddies occurring. The velocity profiles of laminar flow accord with the parabolic distribution law. When the flow is in a transitional regime, velocity profiles deviate slightly from the parabolic law. Turbulent flow has an approximately uniform distribution of velocity and turbulent kinetic energy. The ratio of turbulent kinetic energy to the kinetic energy of time-averaged flow is the internal cause determining the flow regime: laminar flow(k/K0.1); transitional flow(0.1 k/K1); and turbulent flow(k/K1). Turbulent kinetic energy firstly increases with increasing coarse grain concentration and then decreases owing to the suppression of turbulence by the high concentration of coarse grains. This variation is also influenced by coarse grain size and channel slope. The results contribute to the modeling of debris flow and hyperconcentrated flow.  相似文献   

20.
Fine root is critical to restrain soil erosion and its distribution pattern is of great influence on the restraining effects. This study studied the fine root biomass(Br) distribution of different aged Leucaena leucocephala(5, 10, 15 years) in debris flow source area in Jiangjia Gully by digging downward to the bottom at different distances to stem in three directions on slope. The results showed the Br increased dramatically by 143% from 5 years to 10 years and then rose slowly by 38% from 10 years to 15 years. The Br of 5 years was significantly asymmetric between uphill and alonghill directions, but there was little difference among directions for other ages, and a concentration trend appeared to exist in downhill and alonghill directions. Moreover, fine root(D≤1 mm) was significantly heavier than that of fine root(1mmD≤2 mm), playing a leading role in the vertical distribution of the whole fine root, with a logarithmic or an exponential function. The results presented may shed light on fine root distribution pattern and evaluation of its effect on slope stability in debris flow source area.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号