首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The reactions of diethylaminoethynyl(trimethyl)silane (1), bis(diethylaminoethynyl)methylsilane (2), diethylaminoethynyl(trimethyl)germane (3), dimethylaminoethynyl(triethyl)germane (4), diethylaminoethynyl(trimethyl)stannane (5) and methyl(phenyl)aminoethynyl(trimethyl)stannane (6) with trialkylboranes [BEt3 (7b), BPr3 (7c), BiPr3 (7d) and 9‐alkyl‐9‐borabicyclo[3.3.1]nonanes 9‐Me‐9‐BBN (8a) and 9‐Et‐9‐BBN (8b)] were studied. The alkynes 1 and 2 did not react even with boiling BEt3, whereas the reactions of 3–6 afforded mainly novel enamines [(E)‐1‐amino‐1‐trialkylgermyl‐2‐dialkylboryl‐alkenes (9, 10), (E)‐1‐diethylamino‐1‐trimethylstannyl‐2‐dialkylboryl‐alkenes (11, 12), (E)‐1‐methyl(phenyl)amino‐1‐trimethylstannyl‐2‐dialkylboryl‐alkenes (13, 14)]. This particular stereochemistry is unusual for products from 1,1‐organoboration reactions, indicating a special influence of the amino group. The starting materials and products were characterized by multinuclear magnetic resonance spectroscopy (1H, 11B, 13C, 15N, 29Si, 119Sn NMR). Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

2.
A Pd(dba)2–P(OEt)3 combination allowed the silastannation of arylacetylenes, 1‐hexyne or propargyl alcohols with tributyl(trimethylsilyl)stannane to take place at room temperature, producing (Z)‐2‐silyl‐1‐stannyl‐1‐substituted ethenes in high yields. Novel silyl(stannyl)ethenes were fully characterized by 1H‐, 13C‐, 29Si‐ and 119Sn‐NMR as well as infrared and mass analyses. Treatment of a series of (Z)‐1‐aryl‐2‐silyl‐1‐stannylethenes and (Z)‐1‐(3‐pyridyl)‐2‐silyl‐1‐stannylethene with hydrochloric acid or hydroiodic acid in the presence of tetraethylammonium chloride (TEACl) or tetrabutylammonium iodide (TBAI) led to the exclusive formation of (E)‐trimethyl(2‐arylethenyl)silanes with high stereoselectivity. A similar reaction of (Z)‐1‐(2‐anisyl)‐2‐silyl‐1‐stannylethene also produced E‐type trimethyl[2‐(2‐anisyl)ethenyl]silane, while (Z)‐trimethyl [2‐(2‐pyridyl)ethenyl]silane was produced exclusively from (Z)‐1‐(2‐pyridyl)‐2‐silyl‐1‐stannylethene. Protodestannylation of (Z)‐1‐[hydroxy(phenyl)methyl]‐2‐silyl‐1‐stannylethene with trifluoroacetic acid took place via the β‐elimination of hydroxystannane, providing trimethyl(3‐phenylpropa‐1,2‐dienyl)silane quite easily. The destannylation products were also fully characterized. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

3.
The reactions of 1,1′‐bis[Li(trimethylsilyl)amino]ferrocene ( 2a ) with selenium‐ or tellurium tetrahalides gave the 1,1′,3,3′‐tetrakis(trimethylsilyl)‐1,1′,3,3′‐tetraaza‐2‐selene‐ and 2‐tellura‐2,2′‐spirobi[3]ferrocenophanes 5 and 6 , respectively. The analogous reaction with tin dichloride afforded the corresponding 2‐stanna‐2,2′‐spirobi[3]ferrocenophane ( 9 ) rather than the expected stannylene 8 . The reaction of 2,2‐dichloro‐1,3‐bis(trimethylsilyl)‐1,3,2‐diazastanna‐[3]ferrocenophane ( 10 ) with the dilithio reagent 2b also gave the spirotin compound 9 , of which the molecular structure was determined by X‐ray analysis. The formation of the products and their solution‐state structures was deduced from multinuclear magnetic resonance spectroscopic studies (1H, 13C, 15N, 29Si, 77Se, 125Te, 119Sn NMR spectroscopy).  相似文献   

4.
The reactions of alkyn‐1‐yl(vinyl)silanes R2Si[C?C‐Si(H)Me2]CH?CH2 [R = Me (1a), Ph (1b)], Me2Si[C?C‐Si(Br)Me2]CH?CH2 (2a), and of alkyn‐1‐yl(allyl)silanes R2Si[C?C‐Si(H)Me2]CH2CH?CH2 (R = Me (3a), R = Ph (3b)] with 9‐borabicyclo[3.3.1]nonane in a 1:1 ratio afford in high yield the 1‐silacyclopent‐2‐ene derivatives 4a, b and 5a, and the 1‐silacyclohex‐2‐ene derivatives 6a, b, respectively, all of which bear a functionally substituted silyl group in 2‐position and the boryl group in 3‐position. This is the result of selective intermolecular 1,2‐hydroboration of the vinyl or allyl group, followed by intramolecular 1,1‐organoboration of the alkynyl group. In the cases of 4a, b, potential electron‐deficient Si? H? B bridges are absent or extremely weak, whereas in 6a,b the existence of Si? H? B bridges is evident from the NMR spectroscopic data (1H, 11B, 13C and 29Si NMR). The molecular structure of 4b was determined by X‐ray analysis. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

5.
1,1‐Organoboration, using triethyl‐, triallyl‐ and triphenyl‐borane (BEt3, BAll3, BPh3), of dimethysilylethynyl(trimethyl)stannane, Me3Sn? C?C? Si(H)Me2 ( 1 ), affords alkenes bearing three different organometallic groups at the C?C bond. For BEt3 and BPh3, the first products are the alkenes 4 with boryl and stannyl groups in cis‐positions. These rearrange by consecutive 1,1‐deorganoboration and 1,1‐organoboration into the isomers 5 as the final products, where boryl and silyl groups are in cis‐positions linked by an electron‐deficient Si? H? B bridge. 1,1‐Ethylboration of bis(dimethylsilylethynyl)dimethylstannane, Me2Sn[C?C? Si(H)Me2]2 ( 2 ), leads to the stannacyclopentadiene 6 along with non‐cyclic di(alkenyl)tin compounds 7 and 8 . 1,1‐Ethylboration of ethynyl(trimethylstannylethynyl)methylsilane, Me(H)Si(C?C? SnMe3)C?C? H ( 3 ), leads selectively to a new silacyclopentadiene 13 as the final product. The reactions were monitored and the products were characterized by multinuclear magnetic resonance spectroscopy (1H, 11B, 13C, 29Si and 119Sn NMR). Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

6.
The reaction of 1‐silyl‐1‐borylalkenes with alkyn‐1‐yltin compounds affords borol‐2‐enes, organometallic‐substituted allenes, mixtures thereof or even more complex mixtures with buta‐1,3‐dienes, depending on the third substituent at the C?C bond (Bu or Ph), on the number of Si? Cl functions (two or three) and the nature of the alkyn‐1‐yltin compound. Six new borol‐2‐enes were isolated in pure state, and two of them were characterized by X‐ray structural analysis. The solution‐state structures of all major products were clearly established by multinuclear magnetic resonance methods (1H, 11B, 13C, 29Si, 119Sn NMR). Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

7.
The reaction of di(alkyn‐1‐yl)vinylsilanes R1(H2C═CH)Si(C≡C―R)2 (R1 = Me ( 1 ), Ph ( 2 ); R = Bu (a), Ph (b), Me2HSi (c)) at 25°C with 1 equiv. of 9‐borabicyclo[3.3.1]nonane (9‐BBN) affords 1‐silacyclopent‐2‐ene derivatives ( 3a , 3b , 3c , 4a , 4b ), bearing one Si―C≡C―R function readily available for further transformations. These compounds are formed by consecutive 1,2‐hydroboration followed by intramolecular 1,1‐carboboration. Treated with a further equivalent of 9‐BBN in benzene they are converted at relatively high temperature (80–100°C) into 1‐alkenyl‐1‐silacyclopent‐2‐ene derivatives ( 5a , 5b 6a , 6b ) as a result of 1,2‐hydroboration of the Si―C≡C―R function. Protodeborylation of the 9‐BBN‐substituted 1‐silacyclopent‐2‐ene derivatives 3 , 4 , 5 , 6 , using acetic acid in excess, proceeds smoothly to give the novel 1‐silacyclopent‐2‐ene ( 7 , 8 , 9 , 10 ). The solution‐state structural assignment of all new compounds, i.e. di(alkyn‐1‐yl)vinylsilanes and 1‐silacyclopent‐2‐ene derivatives, was carried out using multinuclear magnetic resonance techniques (1H, 13C, 11B, 29Si NMR). The gas phase structures of some examples were calculated and optimized by density functional theory methods (B3LYP/6‐311+G/(d,p) level of theory), and 29Si NMR parameters were calculated (chemical shifts δ29Si and coupling constants nJ(29Si,13C)). Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

8.
Complexes [Me2SnL2 ( I ), Me3SnL ( II ), Et2SnL2 ( III ), n‐Bu2SnL2 ( IV ), n‐Bu3SnL ( V ), n‐Oct2SnL2 ( VI )], where L is (E)‐3‐furanyl‐2‐phenyl‐2‐propenoate, have been synthesized and structurally characterized by vibrational and NMR (1H, 13C and 119Sn) spectroscopic techniques in combination with mass spectrometric and elemental analyses. The IR data indicate that in both the di‐ and triorganotin(IV) carboxylates the ligand moiety COO acts as a bidentate group in the solid state. The 119Sn NMR spectroscopic data, 1J[119Sn,13C] and 2J[119Sn, 1H], coupling constants show a four‐coordinated environment around the tin atom in triorganotin(IV) and five‐coordinated in diorganotin(IV) carboxylates in noncoordinating solvents. The complexes have been screened against bacteria, fungi, and brine‐shrimp larvae to assess their biological activity. © 2008 Wiley Periodicals, Inc. Heteroatom Chem 19:612–620, 2008; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/hc.20488  相似文献   

9.
Reaction between an aqueous ethanol solution of tin(II) chloride and that of 4‐propanoyl‐2,4‐dihydro‐5‐methyl‐2‐phenyl‐3 H‐pyrazol‐3‐one in the presence of O2 gave the compound cis‐dichlorobis(4‐propanoyl‐2,4‐dihydro‐5‐methyl‐2‐phenyl‐3 H‐pyrazol‐3‐onato) tin(IV) [(C26H26N4O4)SnCl2]. The compound has a six‐coordinated SnIV centre in a distorted octahedral configuration with two chloro ligands in cis position. The tin atom is also at a pseudo two‐fold axis of inversion for both the ligand anions and the two cis‐chloro ligands. The orange compound crystallizes in the triclinic space group P 1 with unit cell dimensions, a = 8.741(3) Å, b = 12.325(7) Å, c = 13.922(7) Å; α = 71.59(4), β = 79.39(3), γ = 75.18(4); Z = 2 and Dx = 1.575 g cm–3. The important bond distances in the chelate ring are Sn–O [2.041 to 2.103 Å], Sn–Cl [2.347 to 2.351 Å], C–O [1.261 to 1.289 Å] and C–C [1.401 Å] the bond angles are O–Sn–O 82.6 to 87.7° and Cl–Sn–Cl 97.59°. The UV, IR, 1H NMR and 119Sn Mössbauer spectral data of the compound are reported and discussed.  相似文献   

10.
Para‐hydrogen–induced polarization effects have been observed in the 29Si NMR spectra of trimethylsilyl para‐hydrogenated molecules. The high signal enhancements and the long T1 values observed for the 29Si hyperpolarized resonances point toward the possibility of using 29Si for hyperpolarization applications. A method for the discrimination of multiple compounds and/or complex mixtures of hydroxylic compounds (such as steroids), consisting of the silylization of alcoholic functionalities with an unsaturated silylalkyl moiety and subsequent reaction with para‐H2, is proposed. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

11.
The reactions of the 1,2‐diselenolato‐1,2‐dicarba‐closo‐dodecaborane(12) dianion 1 with diorganoelement(IV) dichlorides (Ph2CCl2, Me2SiCl2, Ph2SiCl2, Me2SnCl2, Ph2SnCl2) gave novel five‐member heterocycles along with other products. The molecular structures of the five‐member rings containing CPh2 ( 2 ) and SnPh2 ( 9 ) moieties between the selenium atoms were determined by X‐ray analyses. In the case of the chlorosilanes, the analogous five‐member ring containing the SiPh2 unit ( 4 ) could be identified in mixtures. The expected reaction was accompanied by rearrangement leading to formation of another five‐member ring 6 containing the Ph2Si? Se? Se moiety. Oxidative addition of the five‐member heterocycles containing tin ( 7, 9 ) to ethene‐bis(triphenylphosphane)platinum(0) gave at low temperature the bis(triphenylphosphane)platinum(II) complexes 12 and 13 , where the Pt(PPh3)2 fragment had been inserted into one of the Sn? Se bonds. Extensive decomposition of these complexes was observed above ? 20 °C. The proposed solution‐state structures of the new compounds are supported by multinuclear magnetic resonance data (1H, 11B, 13C, 29Si, 31P, 77Se, 119Sn and 195Pt NMR). Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

12.
Two organotin (IV) derivatives, [Bu2‐ Sn(HO3PO‐i‐Pr)2]2 ( 1 ) and [Bu2Sn(HO3POPh)2]2 ( 2 ), have been prepared by reactions of di‐n‐butyltin oxide with the phenylphosphoric acid and isopropylphosphoric acid, respectively. Characterization of the complexes 1 and 2 was achieved using elemental analysis, IR, NMR (1H, 13C, 31P, and 119Sn) spectroscopy, and X‐ray crystallography diffraction analysis. The X‐ray data reveal that complexes 1 and 2 are dimers containing eight‐membered Sn2O4P2 inorganic ring. Interestingly, complexes 1 and 2 are further linked into 2D network through intermolecular O … Sn weak contacts and O H … O weak hydrogen‐bonding interactions. © 2010 Wiley Periodicals, Inc. Heteroatom Chem 21:298–303, 2010; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/hc.20610  相似文献   

13.
The reaction of N‐methyl‐2,2′‐diphenolamine 1 and 2,2′‐diphenolamine 2 with some diorganotin(IV) oxides [R1/2SnO: R1 = Me, n‐Bu, t‐Bu and Ph] led to the syntheses of diorgano[N‐methyl‐2,2′‐diphenolato‐O,O′,N]tin (IV) 3–6 and diorgano[2,2′‐diphenolato‐O,O′,N]tin (IV) 7–9 . All compounds (except 7 ) studied in this work were characterized by 1H, 13C, 119Sn NMR, infrared, and mass spectroscopy. Their 119Sn NMR data show that the tin atom is tetracoordinated in CDCl3 but penta and hexacoordinated in DMSO‐d6. © 1999 John Wiley & Sons, Inc. Heteroatom Chem 10: 133–139, 1999  相似文献   

14.
Treatment of dichloromethyl‐tris(trimethylsilyl)silane (Me3Si)3Si–CHCl2 ( 1 ), prepared by the reaction of tris(trimethylsilyl)silane with chloroform in presence of potassium tertbutoxide, with organolithium reagents (molar ratio 1 : 3) affords the bis(trimethylsilyl)methyl‐disilanes Me3SiSiR2–CH(SiMe3)2 ( 12 a–d ) ( a : R = Me, b : R = n‐Bu, c : R = Ph, d : R = Mes). The formation of 12 a–d is discussed as proceeding through an exceptional series of isomerization and addition reactions involving intermediate silyl substituted carbenoids and transient silenes. The carbenoid (Me3Si)2PhSi–C(SiMe3)LiCl ( 8 c ) is moderately stable at low temperature and was trapped with water to give (Me3Si)2PhSi–CH(SiMe3)Cl ( 9 c ) and with chlorotrimethylsilane affording (Me3Si)2PhSi–CCl(SiMe3)2 ( 7 c ). For 12 d an X‐ray crystal structure analysis was performed, which characterizes the compound as a highly congested silane with bond parameters significantly deviating from standard values.  相似文献   

15.
The cycloaddition between N‐protected 3‐{1‐[(trimethylsilyl)oxy]ethenyl}‐1H‐indoles and substituted maleimides (= 1H‐pyrrole‐2,5‐diones) yielded substituted pyrrolo[3,4‐a]carbazole derivatives bearing an additional succinimide (= pyrrolidine‐2,5‐dione) moiety either at C(5a) or C(10b) depending on the type of the protection group at the indole N‐atom. Derivatives substituted at C(10b) were isolated when the protection group, Me3Si or Boc (tBuOCO), was eliminated during the reaction (Schemes 2 and 3), whereas a substitution at C(5a) was observed when an electron‐withdrawing group, Tos (4‐MeC6H4SO2) or pivaloyl (Me3CCO), was not eliminated (Scheme 1). Complex results were found in reactions between 1‐(trimethylsilyl)‐3‐{1‐[(trimethylsilyl)oxy]ethenyl}‐1H‐indole, in contrast to formerly reported results (Scheme 3). Some derivatives of 1H,5H‐[1,2,4]triazolo[1′,2 : 1,2]pyridazino[3,4‐b]indole‐1,3(2H)‐dione were obtained from reactions with 4‐phenyl‐3H‐1,2,4‐triazole‐3,5(4H)‐dione (Scheme 2). All structures were established by spectroscopic data, by calculations, and one representative structure was confirmed by an X‐ray crystallographic analysis (Fig.). Finally, the formation of the different structure types was discussed, and compared with similar reactions reported in the literature.  相似文献   

16.
The 2‐tert‐butyl, 2‐phenoxy, and 2‐diethylamino derivatives of 1,3‐bis(trimethylsilyl)‐1,3,2‐diazaphospha‐[3]ferrocenophane were prepared, and the molecular structure of the latter was determined by X‐ray diffraction. The phosphines could be oxidized by their slow reactions with sulfur or selenium, and the molecular structures of three sulfides and one selenide were determined. In contrast, the synthesis of oxides was less straightforward. All new compounds were characterized in solution by multinuclear magnetic resonance methods (1D and 2D 1H, 13C, 15N, 29Si, 31P, and 77Se NMR spectroscopy).  相似文献   

17.
Infinite dilution 29Si and 13C NMR chemical shifts were determined from concentration dependencies of the shifts in dilute chloroform and acetone solutions of para substituted O‐silylated phenols, 4‐R‐C6H4‐O‐SiR′2R″ (R = Me, MeO, H, F, Cl, NMe2, NH2, and CF3), where the silyl part included groups of different sizes: dimethylsilyl (R′ = Me, R″ = H), trimethylsilyl (R′ = R″ = Me), tert‐butyldimethylsilyl (R′ = Me, R″ = CMe3), and tert‐butyldiphenylsilyl (R′ = C6H5, R″ = CMe3). Dependencies of silicon and C‐1 carbon chemical shifts on Hammett substituent constants are discussed. It is shown that the substituent sensitivity of these chemical shifts is reduced by association with chloroform, the reduction being proportional to the solvent accessible surface of the oxygen atom in the Si‐O‐C link. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

18.
New 6,6‐dimethyl‐2‐oxo‐4‐{2‐[5‐alkylsilyl(germyl)]furan(thiophen)‐2‐yl}vinyl‐5,6‐dihydro‐2H‐pyran‐3‐carbonitriles (IC50: 1–6 µg ml?1) have been prepared by the condensation of corresponding silicon‐ and germanium‐containing furyl(thienyl)‐2‐carbaldehydes with 3‐cyano‐4,6,6‐trimethyl‐5,6‐dihydropyran‐2‐one using piperidine acetate as a catalyst. The obtained carbonitriles were identified using NMR (1H, 13C and 29Si) spectroscopy and GC‐MS. The structure of 6,6‐dimethyl‐2‐oxo‐4‐[2‐(5‐trimethylsilyl)thiophen‐2‐yl]‐5,6‐dihydro‐2H‐pyran‐3‐carbonitrile was studied using X‐ray diffractometry. The influences of the heterocycle and the structure of the organoelement substituent on cytotoxicity and on matrix metalloproteinase inhibition have been studied. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

19.
Carbene Homologues of Germanium, Tin, and Lead with 2‐substituted N ‐Pyrrolyl Ligands A series of germylenes, stannylenes, and plumbylenes could be prepared by reacting the appropriate bis(trimethylsilyl)amino‐substituted carbene homologue E[N(SiMe3)2]2 (E = Ge, Sn, and Pb) with an α‐carbonyl substituted pyrrole derivative under elimination of bis(trimethylsilyl)amine. The isolated compounds have been analysed spectroscopically, and the resulting NMR and IR data were contrasted with parameters obtained from quantumchemical calculations. The good agreement between experimental and theoretical results gives us the opportunity to discuss the vibrations in more detail, particularly those in which the group 14 element is involved. X‐ray crystal structure analyses obtained for five examples show the title compounds essentially to be monomers with primary E–N bonds and, in addition to that, coordinative E ← O contacts.  相似文献   

20.
The reactions of R3SnCl (R = Me, Bu or Ph) with sodium 4‐phenylbutyrate, Na(OPhb), in EtOH yielded three polymeric triorganotin carboxylates, namely [R3Sn(OPhb)]n (R = Me ( 1 ), Bu ( 2 ) or Ph ( 3 )). All complexes were spectroscopically characterized using Fourier transform infrared, 119Sn Mössbauer, 1H NMR, 13C{1H} NMR and 119Sn{1H} NMR spectral techniques. In addition, the crystal structures of 1 and 3 were determined using single‐crystal X‐ray diffraction. Their polymeric structures are sustained by bridging carboxylates which connect two five‐coordinate Sn(IV) centres. Each metallic cation displays a distorted trigonal bipyramidal coordination geometry (Addison's parameters ranging from 0.84 in 1 to 0.77–0.91 in 3 ), with the oxygen atoms occupying the apical positions and the organic groups at the equatorial corners. The one‐dimensional zigzag chains of 1 propagate along the b ‐axis, whereas 3 displays wave‐like double polymeric chains along the b ‐axis. For both 1 and 3 , parallel one‐dimensional polymeric chains are interconnected by C─H⋅⋅⋅π interactions. The antifungal activity of 1 – 3 was screened against Candida albicans (ATCC 18804), C. tropicalis (ATCC 750), C. glabrata (ATCC 90030), C. parapsilosis (ATCC 22019), C. lusitaniae (CBS 6936) and C. dubliniensis (clinical isolate 28). The antifungal activity of 3 was noteworthy since it was not only more active than 1 and 2 , but also more active than the control drugs (nystatin and fluconazole nitrate) in some cases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号