首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In this paper a geomorphic-centered system was proposed for classifying the wetlands on the Qinghai-Tibet Plateau in western China, where the flora comprises primarily grasses. Although the geomorphic properties (e.g., elevation and morphology) of wetlands form the primary criteria of classification, this system also takes hydrological processes into implicit consideration. It represents an improvement over the hydrogeomorphic perspective as the relative importance of the two components (wetness and landform) of wetlands is clearly differentiated. This geomorphic-centered perspective yields insights into the hydrogeomorphic dynamics of plateau wetlands while indicates their vulnerability to change and degradation indirectly. According to this geomorphic-centered perspective, all plateau wetlands fall into one of the seven types of alpine, piedmont, valley, terrace, floodplain, lacustrine, and riverine in three elevational categories of upland, midland, and lowland. Upland (alpine and piedmont) wetlands with the steepest topography are the most sensitive to change whereas midland (floodplain, terrace and valley) wetlands are less vulnerable to degradation owing to a high water reserve except terrace wetlands. They have a dry surface caused by infrequent hydrological replenishment owing to their higher elevation than the channel. Low lying (lacustrine and riverine) wetlands are the most resilient. The geomorphic-centered perspective developed in this paper provides a framework for improving recognition and management of wetlands on the Plateau. Resilient wetlands can be grazed more intensively without the risk of degradation. Fragile and vulnerable wetlands require careful managementto avoid degradation.  相似文献   

2.
Understanding the soil taxonomy and distribution characteristics of the permafrost region in the Qinghai-Tibet Plateau(QTP) is very important. On the basis of extensive field surveys and experimental analysis, this study carries out soil taxonomic classification of the permafrost region in the QTP. According to Chinese Soil Taxonomy, the soil of the permafrost region in the QTP can be divided into 6 Orders(Histosols, Aridosols, Gleyosols, Isohumosols, Cambosols, Primosols), 11 Suborders, 19 Groups and 24 Subgroups. Cambosols are the dominant soil type in the permafrost region, followed by Aridosols. From the east to the west of the permafrost region in the QTP, the soil type gradually changes from Cambosols to Aridosols, showing a meridional zonality. The eastern region is dominated by Cambosols, with no obvious latitudinal zonality. From the south to the northwest of the western region, the dominance of Aridosols and Cambosols gradually transited to Aridosols, presenting a latitudinal zonality. The soil in the western region shows a poor vertical zonality, while the distribution of suborders of Cambosols in the eastern region shows a more obvious vertical zonality. The result indicates that precipitation and vegetation are the main factors that influence the zonal distribution of soil. The permafrost in the east has some effect on the vertical soil zonality, but the effect is weakened in the west.  相似文献   

3.
China is a mountainous country with a great diversity of landform and geomorphology. This diversity underlines the need for regionalization and classification. This study defines the mountain terrains and regions with three criteria - elevation, relative height, and slope, and examines the extent of mountainous regions by using county as the basic administrative unit. According to the three parameters of economic base, resident income and development potential, we classified the economic development level in mountainous regions of China. The findings reveal that the extent of the mountainous region accounts for 74.9% of the Mainland China’s total area. The economic development of mountainous regions in China is classified into 4 main types and 23 subtypes.  相似文献   

4.
Knowledge of the spatial distribution of permafrost and the effects of climate on ground temperature are important for land use and infrastructure development on the Qinghai-Tibet Plateau (QTP). Different permafrost models have been developed to simulate the ground temperature and active layer thickness (ALT). In this study, Temperature at Top of Permafrost (TTOP) model, Kudryavtsev model and modified Stefan solution were evaluated against detailed field measurements at four distinct field sites in the Wudaoliang Basin to better understand the applicability of permafrost models. Field data from 2012 to 2014 showed that there were notable differences in observed ground temperatures and ALTs within and among the sites. The TTOP model is relatively simple, however, when driven by averaged input values, it produced more accurate permafrost surface temperature (Tps) than the Kudryavtsev model. The modified Stefan solution resulted in a satisfactory accuracy of 90%, which was better than the Kudryavtsev model for estimating ALTs. The modified Stefan solution had the potential of being applied to climate-change studies in the future.Furthermore, additional field investigations over longer periods focusing on hydrology, which has significant influence on permafrost thaw, are necessary. These efforts should employ advanced measurement techniques to obtain adequate and extensive local parameters that will help improve model accuracy.  相似文献   

5.
The Qinghai-Tibet Plateau(QTP) is the most unique region of human-land relations, and its main factor is population. By building a population and space dataset of the QTP at the township level from 1982 to 2017, this paper presents the pattern evolvement and regional distribution characteristics of township-level population in the QTP in detail for the first time. By using Geodetector method to analyze the influencing factors of township-level population change in the QTP, this paper provides sc...  相似文献   

6.
Guizhou Karst Plateau is located at the center of the karst region in Asia, where landslides are a typical disaster. Affected by the local karst environment, the landslides in this region have their own characteristics. In this study, 3975 landslide records from inventories of the Guizhou karst plateau are studied. The geographical detector method is used to detect the dominant casual factor and predominant multi-factor combinations for the local landslides. The results show that landslides are prone to areas on slopes between 10° and 35°, of clay rock, in close proximity to gullies, and especially in areas of moderate vegetation, dryland, and mild rocky desertification. Continuous precipitation over 10 days has a great effect on landslide occurrence. Compared with the individual factors, the impact of two-factor interaction has greater explanatory power for landslide volume. The volume of earthquake-induced landslides is predominantly controlled by the interactions of faults and slopes, while that of humaninduced landslides is affected by the interactions of land cover and hydrological conditions. For rainfallinduced landslides, the dominant interactions vary in different regions. In the central karst basin, the interactions between faults and precipitation can explain over 90% of the variations in landslide volumes. In the southern hilly karst region, the interactions between lithology and slope can explain over 71% of the variations in landslide volume and those between fault and land-use can explain 50% of the variations of the landslide volumes in the northeastern mountainous karst region.  相似文献   

7.
Located in southwestern China, Jiuzhaigou National Park is one of the most popular tourism destinations in China, famous for its unique aquatic ecosystems and beautiful forests. However, plants in the park may be at high ozone risk as a result of the intensive use of diesel tour buses in the park. In addition, Jiuzhaigou is close to a region with relatively high regional anthropogenic NO x emissions. During the growing season, also the peak season of tourism, we measured ozone concentration at two sites within the Park and these were: Jiuzhaigou Bureau (JB) and Long Lake (LL). The results indicate that ozone concentrations were not high enough to cause foliar injury during the monitoring period, although the risk of ozone to plants was higher in spring than in summer and autumn. Diurnal ozone cycles at JB and LL displayed significantly higher ozone concentrations in the daytime than in the nighttime, suggesting photochemical production of ozone during the day and ozone deposition during the night as a result of the nocturnal boundary layer. In parallel with the seasonal change of background surface ozone in the Northern Hemisphere, maximum daily 8-h average ozone concentration (MDA8) and daily ozone concentration decreased from spring to autumn at the two sites. This temporal variation in Jiuzhaigou was most likely associated with the downward mixing of ozone-rich air from the free troposphere, because all the high-ozone events (MDA8 > 70.0 ppb) were observed in spring and ozone-rich air from the free troposphere was the dominant cause. In summary, our data suggest that ozone concentrations in Jiuzhaigou were more affected by the regional-scale of background pattern in air quality and meteorological conditions than by local tourist activities.  相似文献   

8.
This study aims to assess the hydrological effects of four herbs and four shrubs planted in a selfestablished test area in Xining Basin of northeastern Qinghai-Tibet Plateau, China. The RainfallIntercepting Capability(RIC) of the herbs and shrubs was evaluated in rainfall interception experiment at the end of the third, fourth and fifth month of the growth period in 2007. The leaf transpiration rate and the effects of roots on promoting soil moisture evaporation in these plants were also assessed in transpiration experiment and root-soil composite system evaporation experiment in the five month's growth period. It is found that the RIC of the fourstudied herbs follows the order of E. repens, E. dahuricus, A. trachycaulum and L. secalinus; the RIC of the four shrubs follows the order of A. canescens, Z. xanthoxylon, C. korshinskii and N. tangutorum. The RIC of all the herbs is related linearly to their mean height and canopy area(R~2 ≥ 0.9160). The RIC of all the shrubs bears a logarithmic relationship with their mean height(R~2 ≥ 0.9164), but a linear one with their canopy area(R~2 ≥ 0.9356). Moreover, different species show different transpiration rates. Of the four herbs, E. repens has the highest transpiration rate of 1.07 mg/(m~2·s), and of the four shrubs, A. canescens has the highest transpiration rate(0.74 mg/(m~2·s)). The roots of all the herbs and shrubs can promote soil moisture evaporation. Of the four herbs, the evaporation rate of E. repens root-soil composite system is the highest(2.14%), and of the four shrubs,the root-soil composite system of A. canescens has the highest evaporation rate(1.41%). The evaporation rate of the root-soil composite system of E. dahuricus and Z. xanthoxylon bears a second-power linear relationship with evaporation time(R~2 ≥ 0.9924). The moisture content of all the eight root-soil composite systems decreases exponentially with evaporation time(R~2 ≥ 0.8434). The evaporation rate and moisture content of all the plants' root-soil composite systems increases logarithmically(R~2 ≥ 0.9606) and linearly(R~2 ≥ 0.9777) with root volume density. The findings of this study indicate that among the four herbs and four shrubs, E. repens and A. canescens possess the most effective hydrological effects in reducing the soil erosion and shallow landslide in this region.  相似文献   

9.
Accurate information on the spatial distribution and temporal change of wetlands is vital to devise effective measures for their protection. This study uses satellite images in 1994 and 2001 to assess the effects of topography and proximity to channels on wetland change in Maduo County on the Qinghai-Tibet Plateau, western China. In 1994 wetlands in the study area extended over 6,780.0 km2. They were distributed widely throughout the county, with a higher concentration in the south, and were especially prominent close to streams. The pattern of wetlands demonstrated a bell-shaped distribution curve with elevation, ranging over hill slopes with gradients from 0-19°, the commonest gradient being around 3°. Although the aspects of these hill slopes range over all directions, there is a lower concentration of wetlands facing east and southeast. The extent of wetlands in 2001 decreased to 6,181.1 km2. Marked spatial differentiation in the pattern of wetlands is evident, as their area increased by 1,193.3 km2 at lower elevations but decreased by 1,792.2 km2 at higher ground, resulting in a net decrease of 598.8 km2. In areas with a gradient <2° or >9° the area of wetlands remained approximately consistent from 1994-2001. Newly retained wetlands are situated in relatively flat lowland areas, with no evident preference in terms of aspect. Wetlands on north-, east- and northeast-facing hillslopes with a bearing of 1-86° were more prone to loss of area than other orientations. The altered pattern of wetland distribution from higher to lower elevation on north-facing slopes coincided with the doubling of annual temperature during the same period, suggesting that climate warming could be an important cause.  相似文献   

10.
The ground ice content in permafrost serves as one of the dominant properties of permafrost for the study of global climate change, ecology, hydrology and engineering construction in cold regions. This paper initially attempts to assess the ground ice volume in permafrost layers on the Qinghai-Tibet Plateau by considering landform types, the corresponding lithological composition, and the measured water content in various regions. An approximation demonstrating the existence of many similarities in lithological composition and water content within a unified landform was established during the calculations. Considerable knowledge of the case study area, here called the Source Area of the Yellow(Huanghe) River(SAYR) in the northeastern Qinghai-Tibet Plateau, has been accumulated related to permafrost and fresh water resources during the past 40 years. Considering the permafrost distribution, extent, spatial distribution of landform types, the ground ice volume at the depths of 3.0–10.0 m below the ground surface was estimated based on the data of 101 boreholes from field observations and geological surveys in different types of landforms in the permafrost region of the SAYR. The total ground ice volume in permafrost layers at the depths of 3.0–10.0 m was approximately(51.68 ± 18.81) km~3, and the ground ice volume per unit volume was(0.31 ± 0.11) m~3/m~3. In the horizontal direction, the ground ice content was higher in the landforms of lacustrine-marshland plains and alluvial-lacustrine plains, and the lower ground ice content was distributed in the erosional platforms and alluvial-proluvial plains. In the vertical direction, the volume of ground ice was relatively high in the top layers(especially near the permafrost table) and at the depths of 7.0–8.0 m. This calculation method will be used in the other areas when the necessary information is available, including landform type, borehole data, and measured water content.  相似文献   

11.
The Yarlung Zangbo River Basin(YZRB) is situated in the southern part of the Tibetan Plateau and remains in a mostly natural state. To understand the chemical characteristics of spring water and its controlling factors in the YZRB, 68 sets of spring water samples were analyzed using hydrochemical and isotopic techniques. The spring water was found to be slightly alkaline with total dissolved solids(TDS) below 1000 mg L-1. Major ions were Mg2+, Ca2+, SO42-, and HCO3-. The spring water types in this basin were determined to be HCO3-Ca·Mg and SO4·Cl-Ca·Mg. Ion exchange and dissolution of carbonate, gypsum, and silicate were identified as the prevalent hydrogeochemical processes contributing and defining spring water chemistry in this basin. Saturation indices(SI) of most major minerals studied in this region were below zero, indicating that these minerals remain under-saturated in the spring water in this area. Overall, the rank of different processes in terms of their contribution to the chemical composition of spring water in the YZRB was carbonate weathering evaporate dissolution silicate weathering precipitation input. The content of 18 O in spring water ranged from-22.22‰ to-14.08‰ with a mean of-18.15‰. Samples collected below and close to the local and global meteoric water lines indicated that spring water in this area is derived from meteoric water with chemistry affected by evaporation.  相似文献   

12.
13.
Seven surveys were carried out in April, September, October, December 2006 and March, May, August 2007 in the Yellow Sea, China. Variations in the spatial and temporal distribution of Synechococcus, picoeukaryotes and heterotrophic bacteria are quantified using flow cytometry. Synechococcus and heterotrophic bacteria are most abundant from late spring to autumn, while picoeukaryotes concentration is high in spring. Synechococcus and heterotrophic bacteria concentrated high in the northwest part of the Yellow Sea in spring and autumn, while picoeukaryotes distributed evenly over the whole study area except for a small frontal zone in the coastal area on the west (in spring) and central Yellow Sea (in autumn). Under mixing conditions, the vertical distribution of the three picoplankton groups showed a well-mixed pattern. Upon a well-established stratification, the maximum abundance of picoplankton occurred above the mixed layer depth (~30 m). Cell sizes of Synechococcus and picoeukaryotes were estimated by converting forward scatter signals (FSC) from cytometry analysis to cell diameter, showing the results of 0.65–0.82 μm for Synechococcus and 0.85–1.08 μm for picoeukaryotes. The average integrated carbon biomasses ranged 15.26–312.62 mgC/m2 for Synechococcus, 18.54–61.57 mgC/m2 for picoeukaryotes, and 402.63–818.46 mgC/m2 for heterotrophic bacteria. The distribution of Synechococcus and heterotrophic bacteria was temperature dependent, and picoplankton presence was poor in the Yellow Sea Cold Water Mass.  相似文献   

14.
The work presents microparticle concentrations in snowpits from the East Rongbuk Glacier on Mt. Qomolangma (Everest) (ER) (28.02°N, 86.96°E, 6536 m a.s.l.), the Zhadang Glacier on Mt. Nyainqentanglha (NQ) (30.47°N, 90.65°E, 5800m a.s.l.), and the Guoqu Glacier on Mt. Geladaindong (GL) (33.95°N, 91.28°E, 5823m a.s.l.) over the Tibetan Plateau (TP). Variations of microparticle and major ions (e.g. Mg2+, Ca2+) concentrations in snowpits show that the values of the microparticles and ions in the non-monsoon seasons are much higher than those in the monsoon seasons. Annual flux of microparticle deposition at ER is lower than those at NQ and GL, which could be attributed to the long distance away from the possible dust source regions as well as the elevation for ER higher than the others. Compared with other remote areas, microparticle concentrations in the southern TP are much lower than those in the northern TP, but still much higher than those in Greenland and Antarctica. The seasonal and spatial microparticle variations are clearly related to the variations of atmospheric circulation according to the air mass 5-day backward trajectory analyses of HYSPLIT Model. Resultingly, the high microparticle values in snow are mainly attributed to the westerlies and the strong dust storm outbreaks on the TP, while the monsoon circulation brings great amount of precipitation from the Indian Ocean, thus reducing in the aerosol concentrations.  相似文献   

15.
He  Xiuping  Chen  Junhui  Wang  Jiuming  Sun  Xia  Xin  Ming  Wang  Baodong  Liang  Shengkang 《中国海洋湖沼学报》2022,40(6):2242-2255
Journal of Oceanology and Limnology - Lipophilic marine algal toxins (LMATs) are produced by some toxigenic microalgae, which pose a serious threat to marine ecosystem and even human health. The...  相似文献   

16.
应用X射线衍射对青藏髙原东北缘尖扎盆地加让剖面11.8~5.8 Ma的地层沉积物进行矿物分析,结果表明加让剖面沉积物矿物组分主要包括碎屑矿物、碳酸盐矿物和黏土矿物。其中,以碎屑矿物居多,主要是石英、斜长石、云母类矿物(白云母、黑云母),及少量尖晶石、辉石类矿物(普通辉石、锰钙辉石及顽火辉石等)、金红石、刚玉、磁铁矿、钛磁铁矿、榍石、霞石,偶见锆石、石榴子石、锐钛矿;碳酸盐矿物以方解石居为主,白云石占比较少;黏土矿物中,绿泥石占比最高,还有少量赤铁矿、蛭石和沸石。以全岩矿物指标研究为主,结合加让剖面沉积相演化特点,并以磁化率变化为参考,进行系统的矿物学研究,获得了尖扎盆地在11.8~5.8 Ma蕴含的古气候环境演化大致可分为4个阶段:11.8~10.0 Ma,气候干冷期;10.0~8.6 Ma,气候暖湿波动期;8.6~6.2 Ma,气候温暖湿润期;6.2~5.8 Ma,气候干冷期。在约10.0、8.6、7.2 Ma附近,主要矿物占比及组合特征有明显改变,当时的古环境状况发生急剧变化,可能揭示青藏高原东北缘在10~8 Ma期间广泛发生了一系列较强烈的构造运动,来源于周边山脉的剥蚀使得研究区沉积的近源物质增多,约7.2 Ma之后的古环境演化过程主要受青藏高原构造隆升以及全球气候变冷协同影响。  相似文献   

17.
The Sugan Lake Basin is located in the inland arid region of northwestern China,in which groundwater is of great significance to human and ecology.Therefore,it is necessary to understand the chemical characteristics and quality of groundwater in the basin.Based on samples collected from 35 groundwater wells in Sugan Lake Basin,the spatial distribution characteristics of groundwater chemistry,main hydrogeochemical processes and groundwater quality have been discussed in this paper by using the multivariate statistics and hydrochemistry analysis methods.The results showed that the groundwater is weakly alkaline,and its total dissolved solid(TDS)and total hardness(TH) are high,with the average values of 1244.03 mg/L and 492.10 mg/L,respectively.The types of groundwater are mainly HCO_3~--SO_4~(2-)-Ca~(2+)type in the runoff area and Cl~--SO_4~(2-)-Na~+type in the catchment area.Rock weathering and ion exchange are the main controlling factors of regional groundwater chemistry,followed by evaporative crystallization,and human activities have less impact on groundwater.The spatial difference of groundwater quality is obvious,the water quality of the catchment area is not suitable for drinking,and the suitability for plant growth is also poor.The groundwater in the runoff area can be used for drinking,but the hardness is slightly higher,which is more suitable for ecological purpose.  相似文献   

18.
为进一步了解高原土壤湿度变化及其与中国降水的关系,利用青藏高原东部地区1991~2012年22个站10cm、20cm、50cm 3个层次的土壤相对湿度观测资料,分析高原东部地区土壤湿度的时空分布特征.同时利用全国1992~2012年的降水资料与1992~2011年的土壤相对湿度资料,采用求相关系数的方法分析高原东部土壤湿度与全国降水的关系.结果表明:(1)西藏东部土壤相对湿度由东至西呈递减趋势.(2)10cm土层较干,20cm土层的相对湿度是3层中最大的,50cm土壤的湿度变化较为平缓;表层土壤湿度变化较明显.21年来,各层土壤湿度呈不明显下降趋势.(3)高原东部地区土壤湿度与中国东部降水有显著关系,若东部高原春季土壤湿度偏湿(干),则江淮流域夏季降水偏少(多).  相似文献   

19.
The soil moisture movement is an important carrier of material cycle and energy flow among the various geo-spheres in the cold regions. Thus, this research takes the north slope of Bayan Har Mountains in Qinghai-Tibet Plateau as a case study. The present study firstly investigates the change of permafrost moisture in different slope positions and depths. Based on this investigation, this article attempts to investigate the spatial variability of permafrost moisture and identifies the key influence factors in different terrain conditions. The method of classification and regression tree (CART) is adopted to identify the main controlling factors influencing the soil moisture movement. The relationships between soil moisture and environmental factors are revealed by the use of the method of canonical correspondence analysis (CCA). The results show that: 1) Due to the terrain slope and the freezing-thawing process, the horizontal flow weakens in the freezing period. The vertical migration of the soil moisture movement strengthens. It will lead to that the soil-moisture content in the up-slope is higher than that in the down-slope. The conclusion is contrary during the melting period. 2) Elevation, soil texture, soil temperature and vegetation coverage are the main environmental factors which affect the slope-permafrost soil-moisture. 3) Slope, elevation and vegetation coverage are the main factors that affect the slope-permafrost soil-moisture at the shallow depth of 0-20 cm. It is complex at the middle and lower depth.  相似文献   

20.
Alpine ecosystems in permafrost region are extremely sensitive to climate changes.To determine spatial pattern variations in alpine meadow and alpine steppe biomass dynamics in the permafrost region of the Qinghai-Tibet Plateau,China,calibrated with historical datasets of above-ground biomass production within the permafrost region's two main ecosystems,an ecosystem-biomass model was developed by employing empirical spatialdistribution models of the study region's precipitation,air temperature and soil temperature.This model was then successfully used to simulate the spatio-temporal variations in annual alpine ecosystem biomass production under climate change.For a 0.44°C decade-1 rise in air temperature,the model predicted that the biomasses of alpine meadow and alpine steppe remained roughly the same if annual precipitation increased by 8 mm per decade-1,but the biomasses were decreased by 2.7% and 2.4%,respectively if precipitation was constant.For a 2.2°C decade-1 rise in air temperature coupled with a 12 mm decade-1 rise in precipitation,the model predicted that the biomass of alpine meadow was unchanged or slightly increased,while that of alpine steppe was increased by 5.2%.However,in the absence of any rise in precipitation,the model predicted 6.8% and 4.6% declines in alpine meadow and alpine steppe biomasses,respectively.The response of alpine steppe biomass to the rising air temperatures and precipitation was significantly lesser and greater,respectively than that of alpine meadow biomass.A better understanding of the difference in alpine ecosystem biomass production under climate change is greatly significant with respect to the influence of climate change on the carbon and water cycles in the permafrost regions of the Qinghai-Tibet Plateau.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号