首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Lanzerotti  L.J.  Medford  L.V.  Maclennan  C.G.  Kraus  J.S.  Kappenman  J.  Radasky  W. 《Solar physics》2001,204(1-2):351-359
The large solar activity in mid-July 2000 produced a severe geomagnetic storm at Earth during the last half of 15 July universal time. The enhancements and changes in the ionosphere electrical current systems caused large geopotentials to be induced over oceanic distances. Across the northern Atlantic, from New Jersey to near the French coast, a geopotential as large as 0.05 V km−1 (a peak-to-peak voltage of about 300 V) was measured during the geomagnetic storm. While large, this was not among the four largest such geopotentials that have been recorded in the last 60 years across AT&T telecommunications cable routes, ocean and continental. The geomagnetic and geopotential data that were measured during the storm event are presented and discussed.  相似文献   

2.
The latitudinal distribution of sunspot groups over a solar cycle is investigated. Although individual sunspot groups of a solar cycle emerge randomly at any middle and low latitude, the whole latitudinal distribution of sunspot groups of the cycle is not stochastic and, in fact, can be represented by a probability density function of the distribution having maximum probability at about 15.5°. The maximum amplitude of a solar cycle is found to be positively correlated against the number of sunspot groups at high latitude (35°) over the cycle, as well as the mean latitude. Also, the relation between the asymmetry of sunspot groups and its latitude is investigated, and a pattern of the N-S asymmetry in solar activity is suggested.  相似文献   

3.
ARTEMIS IV Radio Observations of the 14 July 2000 Large Solar Event   总被引:1,自引:0,他引:1  
Caroubalos  C.  Alissandrakis  C.E.  Hillaris  A.  Nindos  A.  Tsitsipis  P.  Moussas  X.  Bougeret  J.-L.  Bouratzis  K.  Dumas  G.  Kanellakis  G.  Kontogeorgos  A.  Maroulis  D.  Patavalis  N.  Perche  C.  Polygiannakis  J.  Preka-Papadema  P. 《Solar physics》2001,204(1-2):165-177
In this report we present a complex metric burst, associated with the 14 July 2000 major solar event, recorded by the ARTEMIS-IV radio spectrograph at Thermopylae. Additional space-borne and Earth-bound observational data are used, in order to identify and analyze the diverse, yet associated, processes during this event. The emission at metric wavelengths consisted of broad-band continua including a moving and a stationary type IV, impulsive bursts and pulsating structures. The principal release of energetic electrons in the corona was 15–20 min after the start of the flare, in a period when the flare emission spread rapidly eastwards and a hard X-ray peak occurred. Backward extrapolation of the CME also puts its origin in the same time interval, however, the uncertainty of the extrapolation does not allow us to associate the CME with any particular radio or X-ray signature. Finally, we present high time and spectral resolution observations of pulsations and fiber bursts, together with a preliminary statistical analysis.  相似文献   

4.
Maia  D.  Pick  M.  Hawkins  S.E.  Fomichev  V.V.  Jiřička  K. 《Solar physics》2001,204(1-2):197-212
On 14 July 2000, the LASCO coronagraphs showed a very fast halo coronal mass ejection in association with the radio bursts seen shortly after 10:00 UT. Radio imaging observations by the Nançay radioheliograph (NRH) of these bursts showed a very complex event that can be regarded as global: the sources encompassed all the visible range in longitude and a huge span in latitude. Another interesting feature of the radio event is its recurrent nature: after the most intense phase shortly after 10:00 UT, two other strong outbursts are detected, one at about 12:50 UT and another at about 13:48 UT. All of these sub-events showed similar development and likely evidence for CMEs. The launch of a CME in association with the 14:00 UT sub-event is inferred from WIND/WAVES, with interplanetary type II signatures in the hectometric wavelength range at that time. These later events were not detected by LASCO due to energetic particles hitting the CCD. During the Bastille Day event, energetic particle observations measured in situ by ACE/EPAM are dominated by energetic electrons. Changes in anisotropy and energy spectrum of the ~38–350 keV electrons suggest a good correlation with the coronal radio observations. In addition to the three main radio events and particle observations, the NRH data reveal moving features in the southern hemisphere. These moving features, located at about 45 deg south and with an angular extent of about 45 deg, are illuminated by non-thermal electrons and are seen at distances up to 2.5 solar radii from the Sun center. More generally, we interpret the global and recurrent coronal activity, revealed by the radio data, as responsible for populating the interplanetary medium with energetic electrons.  相似文献   

5.
1INTRODUCTIONEnrichment of3He and heavy ions(i.e.,Ne,Mg,Si and Fe),characteristic of impulsive?ares,have beenstudied for more than three decades.It is found that they are generally associated with nonthermal energeticelectron-rich events(Reames et al.1988;Reames1999and references therein;Ho et al.2001;Wang et al.2006)and are related to the peculiar ratio of charge to mass(Mazur et al.1996;Reames1999).Althoughthe abundance of3He ions is not correlated with the abundance of heavy ions,s…  相似文献   

6.
In this paper we analyse the non-potential magnetic field and the relationship with current (helicity) in the active region NOAA 9077 in 2000 July, using photospheric vector magnetograms obtained at different solar observatories and also coronal extreme-ultraviolet 171-Å images from the TRACE satellite.
We note that the shear and squeeze of magnetic field are two important indices for some flare-producing regions and can be confirmed by a sequence of photospheric vector magnetograms and EUV 171-Å features in the solar active region NOAA 9077. Evidence on the release of magnetic field near the photospheric magnetic neutral line is provided by the change of magnetic shear, electric current and current helicity in the lower solar atmosphere. It is found that the 'Bastille Day' 3B/5.7X flare on 2000 July 14 was triggered by the interaction of the different magnetic loop systems, which is relevant to the ejection of helical magnetic field from the lower solar atmosphere. The eruption of the large-scale coronal magnetic field occurs later than the decay of the highly sheared photospheric magnetic field and also current in the active region.  相似文献   

7.
Share  G.H.  Murphy  R.J.  Tylka  A.J.  Schwartz  R.A.  Yoshimori  M.  Suga  K.  Nakayama  S.  Takeda  H. 《Solar physics》2001,204(1-2):41-53
The HXS and GRS detectors on Yohkoh observed the 14 July 2000, X5.7 flare, beginning at ∼ 10:20 UT, ∼ 4 min before the peak in soft X-rays. The hard X-rays and γ-rays peaked ∼ 3 min later at ∼ 10:27 UT. Solar γ-ray emission lasted until ∼ 10:40 UT. Impact of high-energy ions at the Sun is revealed by the γ-ray lines from neutron capture, annihilation radiation and de-excitation that are visible above the bremsstrahlung continuum. From measurement of these lines we find that the flare-averaged spectrum of accelerated protons is consistent with a power law ge10 MeV with index 3.14±0.15 and flux 1.1×1032 protons MeV−1 at 10 MeV. We estimate that there were ∼1.5×1030 erg in accelerated ions if the power law extended without a break down to 1 MeV; this is about 1% of the energy in electrons > 20 keV from measurements of the hard X-rays. We find no evidence for spectral hardening in the hard X-rays that has been suggested as a predictor for the occurrence of solar energetic particle (SEP) events. This was the third largest proton event above 10 MeV since 1976. The GRS and HXS also observed γ-ray lines and continuum produced by the impact of SEP on the Earth's atmosphere beginning about 13 UT on 14 July. These measurements show that the SEP spectrum softened considerably over the next 24 hours. We compare these measurements with proton measurements in space.  相似文献   

8.
It is usually difficult to gain a consistent global understanding of a coronal mass ejection (CME) eruption and its propagation when only near-Sun imagery and the local measurements derived from single-spacecraft observations are available. Three-dimensional (3D) density reconstructions based on heliospheric imaging allow us to “fill in” the temporal and spatial gaps between the near-Sun and in situ data to provide a truly global picture of the propagation and interactions of the CME as it moves through the inner heliosphere. In recent years the heliospheric propagation of dense structures has been observed and measured by the heliospheric imagers of the Solar Mass Ejection Imager (SMEI) and on the twin Solar TErrestrial RElations Observatory (STEREO) spacecraft. We describe the use of several 3D reconstruction techniques based on these heliospheric imaging data sets to distinguish and track the propagation of multiple CMEs in the inner heliosphere during the very active period of solar activity in late July?–?early August 2010. We employ 3D reconstruction techniques used at the University of California, San Diego (UCSD) based on a kinematic solar wind model, and also the empirical Tappin–Howard model. We compare our results with those from other studies of this active period, in particular the heliospheric simulations made with the ENLIL model by Odstrcil et al. (J. Geophys. Res., 2013) and the in situ results from multiple spacecraft provided by Möstl et al. (Astrophys. J. 758, 10?–?28, 2012). We find that the SMEI results in particular provide an overall context for the multiple-density flows associated with these CMEs. For the first time we are able to intercompare the 3D reconstructed densities with the timing and magnitude of in situ density structures at five spacecraft spread over 150° in ecliptic longitude and from 0.4 to 1 AU in radial distance. We also model the magnetic flux-rope structures at three spacecraft using both force-free and non-force-free modelling, and compare their timing and spatial structure with the reconstructed density flows.  相似文献   

9.
Yan  Yihua  Aschwanden  Markus J.  Wang  Shujuan  Deng  Yuanyong 《Solar physics》2001,204(1-2):27-40
The finite energy force-free magnetic fields of the active region NOAA 9077 on 14 July 2000 above the photosphere were reconstructed. We study the evolution of the 3D magnetic field structures in AR 9077 and compare the reconstructed field lines with TRACE EUV 171 Å flare loops during the flare maximum, which confirms the process that flaring loops extended from lower sheared level to higher arcades. We also demonstrate the 3D magnetic field evolution before the 3B/X5.7 flare on 14 July and the magnetic structure after the flare on 15 July. This shows that the helical magnetic structures were significantly changed, suggesting that the flux rope was indeed erupted during the energetic flare at 10:24 UT on 14 July.  相似文献   

10.
Wang  Shujuan  Yan  Yihua  Zhao  Ruizhen  Fu  Qijun  Tan  Chengming  Xu  Long  Wang  Shijin  Lin  Huaan 《Solar physics》2001,204(1-2):153-164
25 MHz–7.6 GHz global and detailed (fine structure – FS) radio spectra are presented, which were observed in the NOAA 9077 active region for the Bastille Day (14 July 2000) flare at 10:10–11:00 UT. Besides broadband radio bursts, high-resolution dynamic spectra reveal metric type II burst, decimetric type IV burst and various decimetric and microwave FSs, such as type III bursts, type U bursts, reverse-slope (RS)-drifting burst, fiber bursts, patch and drifting pulsation structure (DPS). The peak-flux-density spectrum of the radio bursts over the range 1.0–7.6 GHz globally appears as a U-shaped signature. Analyzing the features of backbone and herringbones of the type II burst, the speeds of shock and relevant energetic electron beams were estimated to be 1100 km s−1 and 58 500 km s−1, respectively. Also the time sequence of the radio emission is analyzed by comparing with the hard X-rays (HXRs) and the soft X-rays (SXRs) in this flare. After the maxima of the X-rays, the radio emission in the range 1.0–7.6 GHz reached maxima first at the higher frequency, then drifted to the lower frequency. This comparison suggested that the flare included three successive processes: firstly the X-rays rose and reached maxima at 10:10–10:23 UT, accompanied by fine structures only in the range 2.6–7.6 GHz; secondly the microwave radio emission reached maxima accompanied by many fine structures over the range 1.0–7.6 GHz at 10:23–10:34 UT; then a decimetric type IV burst and its associated FSs (fibers) in the range 1.0–2.0 GHz appeared after 10:40 UT.  相似文献   

11.
A topological model with magnetic reconnection at two separators in the corona is used to account for the recently discovered changes of the photospheric magnetic field in the active region NOAA 9077 during the July 14, 2000 flare. The model self-consistently explains the following observed effects: (1) the magnetic field strength decreases on the periphery of the active region but increases in its inner part near the neutral line of the photospheric magnetic field; (2) the center-of-mass positions of the fields of opposite (northern and southern) polarities converge; and (3) the magnetic flux of the active region decreases after the flare. The topological model gives not only a qualitative interpretation of the flare phenomena (the structure of the interacting magnetic fluxes in the corona, the location of the energy sources, the shape of the flare ribbons and kernels in the chromosphere and photosphere), but also correct quantitative estimates of the large-scale processes that form the basis for solar flares. The electric field emerging in the flare during large-scale reconnection is calculated. The electric field strength correlates with the observed intensity of the hard X-ray bremsstrahlung, suggesting an electron acceleration as a result of reconnection.  相似文献   

12.
13.
Chertok  I.M.  Fomichev  V.V.  Gnezdilov  A.A.  Gorgutsa  R.V.  Grechnev  V.V.  Markeev  A.K.  Nightingale  R.W.  Sobolev  D.E. 《Solar physics》2001,204(1-2):139-152
The 14 July 2000 (`Bastille Day') eruptive and geoeffective flare event was observed by the digital IZMIRAN radio spectrograph in the frequency range of 25–270 MHz. This instrument allowed the analysis of various features of the dynamic radio spectrum and their comparison with other observational data, in particular with development of a spectacular EUV post-eruption arcade recorded aboard the Transition Region and Coronal Explorer (TRACE). (1) A compressed multi-hour radio spectrum shows that the event caused a conspicuous weakening of the pre-existing noise storm. This phenomenon was perhaps caused by interaction of a large halo coronal mass ejection (CME), recorded by the the Large Angle and Spectroscopic Coronagraph (LASCO) aboard the Solar and Heliospheric Observatory (SOHO), with emitting coronal structures. (2) Several type II bands are present at the initial and maximum phases of the flare event. The frequency drifts of the clearest bands correspond to the estimated shock wave speed of 1100–2300 km s−1 that is comparable with the CME speed observed in the sky plane. (3) Significant broadband enhancements of the metric radio emission took place around of 10:24–10:27 UT coinciding with sharp development of the EUV arcade in the northeast direction. It appears to correspond to the intensification of the electron acceleration in a process of post-eruption loop formation. (4) The high-resolution radio spectrum revealed a superposition of numerous type III-like bursts and/or pulsations with a time scale ranging from a few seconds to several tens of seconds. These features can be attributed particularly to successive formation of new loops of the arcade and corresponding temporal fragmentation of the electron acceleration in the course of the post-eruption reconnection. In summary, the analysis demonstrates the correspondence between the multi-scale temporal features of the metric radio emission and such phenomena as the CME and post-eruption EUV arcade. Some spectra, images, and movies illustrating the event are presented also on the accompanying CD-ROM. Supplementary material to this paper is available in electronic form at http://dx.doi.org/10.1023/A:1014224004946  相似文献   

14.
We have studied the dynamic proton spectra for the two solar energetic particle(SEP) events on2000 July 14(hereafter GLE59) and 2005 January 20(hereafter GLE69). The source locations of GLE59 and GLE69 are N22 W07 and N12 W58 respectively. Proton fluxes 30 Me V have been used to compute the dynamic spectral indices of the two SEP events. Our results show that spectral indices of the two SEP events increased more swiftly at early times, suggesting that the proton fluxes 30 Me V might be accelerated particularly by the concurrent flares at early times for the two SEP events. For the GLE69 with source location at N12 W58, both flare site and shock nose are well connected with the Earth at the earliest time. However, only the particles accelerated by the shock driven by eastern flank of the CME can propagate along the interplanetary magnetic field line to the Earth after the flare. For the GLE59 with source location at N22 W07, only the particles accelerated by the shock driven by western flank of the associated CME can reach the Earth after the flare. Our results also show that there was slightly more than one hour during which the proton spectra for GLE69 are softer than that for GLE59 after the flares, suggesting that the shock driven by eastern flank of the CME associated with GLE69 is weaker than the shock driven by the western flank of the CME associated with GLE59. The results support that quasi-perpendicular shock has stronger potential in accelerating particles than the quasi-parallel shock. These results also suggest that only a small part of the shock driven by western flank of the CME associated with the GLE59 is quasi-perpendicular.  相似文献   

15.
Bilenko  I.A.  Podgorny  A.I.  Podgorny  I.M. 《Solar physics》2002,207(2):323-336
Current sheet (CS) creation and energy accumulation above the NOAA 9077 active region have been numerically simulated. The magnetic spots are approximated by vertical dipoles placed under the photosphere, and the system of resistive 3D MHD equations is solved for compressible plasma with anisotropic thermal conduction. Two neutral magnetic lines are present in the corona above the NOAA 9077 active region, and a vertical CS emerges in the vicinity of one of them. The energy accumulated in this CS is about 5×1032 erg. The j×B/c force in it accelerates plasma upward. The other neutral line is not suitable for CS creation.  相似文献   

16.
17.
Wang  Chi  Richardson  John D.  Burlaga  Len 《Solar physics》2001,204(1-2):413-423
The Bastille Day (14 July) 2000 CME is a fast, halo coronal mass ejection event headed earthward. The ejection reached Earth on 15 July 2000 and produced a very significant magnetic storm and widespread aurora. At 1 AU the Wind spacecraft recorded a strong forward shock with a speed jump from ∼ 600 to over 1000 km s−1. About 6 months later, this CME-driven shock arrived at Voyager 2 (∼ 63 AU) on 12 January 2001 with a speed jump of ∼ 60 km s−1. This provides a good opportunity to study the shock propagation in the outer heliosphere. In this study, we employ a 2.5-D MHD numerical model, which takes the interaction of solar wind protons and interstellar neutrals into account, to investigate the shock propagation in detail and compare the model predictions with the Voyager 2 observations. The Bastille Day CME shock undergoes a dramatic change in character from the inner to outer heliosphere. Its strength and propagation speed decay significantly with distance. The model results at the location of Voyager 2 are in good agreement with in-situ observations. Supplementary material to this paper is available in electronic form at http://dx.doi.org/10.1023/A:1014293527951  相似文献   

18.
L. Zhao  L. Fisk 《Solar physics》2011,274(1-2):379-397
The properties of the heliospheric magnetic field and the solar wind were substantially different in the unusual solar minimum between Cycles 23 and 24: the magnetic-field strength was substantially reduced, as were the flow properties of the solar wind, such as the mass flux. Explanations for these changes are offered that do not require any substantial reconsideration of the general understandings of the behavior of the heliospheric magnetic field and the solar wind that were developed in the minimum of Cycle 22?–?23. Solar-wind composition data are used to demonstrate that there are two distinct regions of solar wind: solar wind likely to originate from the stalk of the streamer belt (the highly elongated loops that underlie the heliospheric current sheet), and solar wind from outside this region. The region outside the streamer-stalk region is noticeably larger in the minimum of Cycle 23?–?24; however, the increased area can account for the reduction in the heliospheric magnetic-field strength in this minimum. Thus, the total magnetic flux contained in this region is the same in the two minima. Various correlations among the solar-wind mass flux and coronal electron temperature inferred from solar-wind charge states were developed for the Cycle 22?–?23 solar minimum. The data for the minimum of Cycle 23?–?24 suggest that the correlations still hold, and thus the basic acceleration mechanism is unchanged in this minimum.  相似文献   

19.
This paper describes the morphology, photospheric magnetic field and radial velocity distribution of the active region of the Class 3B flare (B. R. 2562) of 1980 July 14. Results show that this flare was formed of two parts and that the Velocity field measurements of active regions are important for investigating flare models.  相似文献   

20.
We make a combined study of the class 3B flare of 1980 July 14 using the Hα patrol, white-light photographs, velocity field measurements of the Yunnan Observatory, the SMM data on X-rays, and the radio observations by the Beijing Observatory. The morphological changes are analysed in terms of the EMF model and a number of physical parameters evaluated. Our results show: 1) that the EMF model is in basic agreement with the observations, 2) that the current sheet could be located at or near the points where the zero velocity line cuts the dark filament and the magnetic neutral line and 3) that the hard tX-ray burst was produced by the non-thermal electrons in the current sheet, while the soft X-ray burst was produced by the thermal bremsstrahlung of a hot plasma in the active region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号