首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The dielectric property of a nanoparticle‐supporting film has recently garnered attention in the fabrication of plasmonic surfaces. A few studies have shown that the localized surface plasmon resonance (LSPR), and hence surface‐enhanced Raman scattering (SERS), strongly depends on the substrate refractive index. In order to create higher efficiency SERS‐active surfaces, it is therefore necessary to consider the substrate property along with nanoparticle morphology. However, due to certain limitations of conventional lithography, it is often not feasible to create well‐defined plasmonic nanoarrays on a substrate of interest. Here, an additive nanofabrication technique, i.e., nanotransfer printing (nTP), is implemented to integrate electron beam lithography (EBL) defined high‐aspect‐ratio nanofeatures on a variety of SERS‐supporting surfaces. With the aid of suitable surface chemistries, a wide range of plasmonic particles were successfully integrated on surfaces of three physically and chemically distinct dielectric materials, namely, polydimethyl siloxane (PDMS), SU‐8 photoresist, and glass surfaces, using silicon‐based relief pillars. These nTP‐created metal nanoparticles strongly amplify the Raman signal and complement the selection of suitable substrates for better SERS enhancement. Our experimental observations are also supported by theoretical calculations. The implementation of nTP to stamp out metal nanoparticles on a multitude conventional/unconventional substrates has novel applications in designing in‐built plasmonic microanalytical devices for SERS sensing and other related photonic studies. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

2.
We have first time demonstrated the construction of a plasmonic gold dimer model for bioassays based on immune recognition with surface‐enhanced Raman scattering (SERS). To induce a strong plasmonic coupling effect, a dimer of gold nanoparticles (NPs) with a Raman label located between adjacent NPs is assembled through specific recognition in biological systems. One promising application for this model is the provision of a new type of in situ self‐calibrated and reliable SERS platform where biotinylated molecules can selectively be trapped by streptavidin and placed in the gap enhanced plasmonic field, which may enable the development of powerful, biospecific recognition‐based SERS assays. The capabilities of the dimeric constructions for analytical applications were demonstrated through the use of the SERS technique to detect biotin at very low concentrations. Additionally, the spatial SERS radiation for the gold dimer assembled on the silicon slide was simulated using the finite‐difference time‐domain method; this simulation demonstrated the distribution of the electric field as well as the utility of the proposed system, thereby introducing potential uses of bio‐specific recognition as well as opportunities for the construction of plasmonically coupled nanostructures and bioassay applications. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

3.
Janus nanoparticles capped with a hydrophobic and hydrophilic hemisphere of mercapto ligands can self‐assemble into hollow, emulsion‐like nanostructures in controlled media. As the nanoparticle emulsions are chiroptically active exhibiting a plasmonic circular dichroism absorption in the visible range, they can be exploited as a unique chiral nanoreactor by selective encapsulation of d ‐enantiomer into the water phase of the water‐in‐oil emulsions for directional functionalization of the nanoparticles and endow the resulting nanoparticles with select chirality. This is demonstrated in the present study with gold Janus nanoparticles functionalized with (hydrophobic) hexanethiolates and (hydrophilic) 3‐mercapto‐1,2‐propandiol, and d ,l ‐cysteine is used as the molecular probe. Experimental results demonstrate that d ‐cysteine is the preferred enantiomers entrapped within the nanoparticle emulsions, where the ensuing ligand exchange reaction is initially confined to the hydrophilic face of the Janus nanoparticles. This suggests that with a deliberate control of the reaction time, chiral Janus nanoparticles can be readily prepared by ligand exchange reactions even with a racemic mixture of ligands.  相似文献   

4.
Efficient and homogeneous surface‐enhanced Raman scattering (SERS) substrates are usually prepared using lithographic approaches, physical evaporation, or in situ chemical reduction. However, these approaches are time‐consuming, expensive, and very difficult to upscale. Alternatively, template‐assisted approaches using colloidal suspensions of preformed nanoparticles have become more popular because of their low cost, fast production, and ability to be scaled up easily. One of the limitations of these methods is the dimensions of the structured surfaces. In this context, a new method for designing low‐cost, up‐scalable surface patterns that match building block dimensionality based on anodization of aluminum, enabling a hierarchical organization of anisotropic nanoparticles, is presented. The proposed new technology starts with anodized aluminum oxide with regular parallel linear periodicities. To produce a highly efficient plasmonic surface, gold nanorods are assembled into parallel lines where the long axes of the Au rods are also oriented along the substrate lines, thus inducing reproducible tip‐to‐tip plasmonic coupling with the corresponding generation of highly active hotspots. Additionally, this advanced material presents an inherent hydrophobicity that can be exploited as a method for concentration of analytes on the surface. SERS detection is demonstrated with benzenethiol and 2‐naphtoic acid.  相似文献   

5.
A three‐dimensional surface‐enhanced Raman scattering (SERS) substrate via the self‐assembly of properly sized Au nanoparticles in anodic aluminum oxide templates was designed and prepared. Au nanoparticles first underwent hydrophobic surface modification. Then, the hydrophobic Au nanoparticles self‐assembled, aggregated and formed many hot spots in the anodic aluminum oxide templates through a supramolecular interaction. We chose thiophenol as a probe molecule to evaluate the SERS enhancement ability of this three‐dimensional substrate. The enhancement factor was calculated to be 4.6 × 106 under the radiation of a 785‐nm laser. By further comparing SERS signals from different points on the same substrate, we confirmed that this substrate possessed good reproducibility and could be applied for SERS detection. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

6.
We report the preparation of bifunctional silver–iron oxide composite nanostructures (Ag@Fe2O3) and demonstrate their magnetic separation with an analyte molecule from silver nanoparticles in a mixed solution. Magnetic and non‐magnetic plasmonic nanostructures and their separation are monitored by the surface‐enhanced Raman scattering (SERS) spectra of two different analytes attached to each kind of particles. In general, such separation experiments can provide insight into basic phenomena of adsorption and exchange of adsorbed molecules which are of strong interest in SERS. The formation of stable Ag@Fe2O3 nanoparticle–molecule complexes suggests small magnetic SERS labels without additional protective layers for application in analytical assays. The magnetic plasmonic nanostructures have great promise for targeted imaging and sensing in biological structures by directing nanosensors to places of interest using magnetic fields. The option of magnetic separation and collection of plasmonic particles improves the analytical capabilities of SERS. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

7.
Ag nanoparticles synthesized on porous silicon samples were studied and applied as substrates for surface‐enhanced Raman scattering (SERS). The metallic nanostructures prepared by immersion plating were characterized by UV–Vis reflectance spectroscopy and scanning electron microscopy. SERS activity of the substrates was tested using Cyanine dye 1,3,3,1′,3′,3′‐esamethyl‐5,5′‐dimethoxyindodicarbocyanine iodide (Cy5‐OCH3) as a probe molecule. The Raman spectra obtained for different excitation wavelengths indicate amplifications ascribed to plasmonic resonances with an enhancement factor up to 107. CGIYRLRS peptides were chemisorbed on the Ag nanoparticles with the plasmonic resonance tuned at the excitation energy. Such oligopeptides were used as baits for a specific polyclonal antibody. The overall Raman enhancement allowed to evidence a good selectivity to the target analyte as required by most of the SERS applications on biological assays. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

8.
A simple fabrication method is demonstrated for surface‐enhanced Raman scattering (SERS)‐active plasmonic nanoballs, which consisted of Au nanoparticles (NPs) and core–shell polystyrene and amino‐terminated poly(butadiene) particles, by heterocoagulation and Au NP diffusion. The amount of Au NPs introduced into the core–shell particles increases with the concentration of Au NPs added to the aqueous dispersion of the core–shell particles. When the amount of Au NPs increases, closely packed, three‐dimensionally arranged and close‐packed Au NPs arrays are formed in the shells. Strong SERS signals from para‐mercaptophenol adsorbed onto composite particles with multilayered Au NPs arrays are obtained by near‐infrared (NIR) light illumination.  相似文献   

9.
In this work, we use electrochemical oxidation–reduction cycles (ORC) methods to prepare surface‐enhanced Raman scattering (SERS)‐active gold substrates modified with SiO2 nanoparticles to improve the corresponding SERS performances. Based on the modified substrates, the SERS of Rhodamine 6G (R6G) exhibits a higher intensity by 3‐fold of magnitude, as compared with that of R6G adsorbed on a SERS‐active Au substrate without the modification of SiO2 nanoparticles. Moreover, the SERS enhancement capabilities of the modified and the unmodified Au substrates are seriously destroyed at temperatures higher than 250 and 200 °C, respectively. These results indicate that the modification of SiO2 nanoparticles can improve the thermal stability of SERS‐active substrates. The aging in SERS intensity is also depressed on this modified Au substrate due to the contribution of SiO2 nanoparticles to SERS effects. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

10.
We presented a controlled particles‐in‐cavity (PIC) pattern for surface‐enhanced Raman scattering (SERS) detection. The periodic gold cavity array was fabricated by electrodeposition using highly ordered polystyrene spheres as a template. The as‐prepared gold cavities can be used as a SERS active substrate with significant spectral enhancement and reproducibility, which was evaluated by SERS signals using 4‐mercaptobenzoic acid (4‐MBA) as probe molecules. The surface of these gold cavities was further functionalized with cetyltrimethylammonium bromide molecules, which may immobilize the 4‐MBA‐modified silver nanoparticles in the gold cavity to form a PIC structure via the electrostatic interaction. We have demonstrated that there exists a pH window for the immobilization of the nanoparticles inside cavities. Therefore, the silver nanoparticles can be selectively immobilized into the functionalized gold cavities under the optimized pH value of the media. Further enhancement of the Raman scattering of the labeled molecules can be achieved due to the interconnection between the silver nanoparticles and gold cavity. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

11.
A comparative study of the solid substrates used in surface‐enhanced Raman scattering (SERS) based immunoassay is made in this paper. Five different substrates were prepared and divided into two groups with and without SERS activity. They are (1) a poly‐L ‐lysine slide, (2) a glutaraldehyde (GA)‐aminosilane slide, (3) a substrate assembled with silver nanoparticles, (4) a substrate assembled with silver nanoparticles and functionalized with GA–aminosilane and (5) a substrate assembled with gold nanoparticles, of which the first two are substrates are without SERS activity and the latter three are with SERS activity because of the existence of the metallic nanoparticles. The SERS experimental results show that the immunoassay performed on an SERS‐active substrate is more effective than that employing the inactive substrate. Among the inactive substrates, the GA–aminosilane slide with a better ability for antibody immobilization leads to a more sensitive immunoassay than the poly‐L ‐lysine slide. Moreover, for SERS‐based immunoassay, the substrate with assembled silver nanoparticles has an advantage of higher SERS enhancement capacity over the substrate assembled with gold nanoparticles. This work indicates that SERS‐active substrates play important and positive roles in sensitive SERS‐based immunoassay. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

12.
In this paper, the fabrication of an active surface‐enhanced Raman scattering (SERS) substrate by self‐assembled silver nanoparticles on a monolayer of 4‐aminophenyl‐group‐modified glassy carbon (GC) is reported. Silver nanoparticles are attached to the substrate through the electrostatic force between the negatively charged silver nanoparticles and the positively charged 4‐aminophenyl groups on GC. The active SERS substrate has been characterized by means of tapping‐mode atomic force microscopy (AFM), indicating that large quantities of silver nanoparticles are uniformly coated on the substrate. Rhodamine 6G (R6G) and p‐aminothiophenol (p‐ATP) are used as the probe molecules for SERS, resulting in high sensitivity to the SERS response, with the detection limit reaching as low as 10−9 M . This approach is easily controlled and reproducible, and more importantly, can extend the range of usable substrates to carbon‐based materials for SERS with high sensitivity. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

13.
We report surface‐enhanced Raman studies on intact plant material using onion layers as a biological target, and silver nanoaggregates and silver island films as enhancing plasmonic structures. Surface‐enhanced Raman scattering (SERS) enhancement allows the detection of strong Raman signatures of chemical constituents of the surface of the onion layer such as cellulose, proteins, and flavonols. Because of long‐time incubation, SERS sensors can access the extracellular space in the inner of the layer. The location of silver nanoparticles inside the onion layer has been monitored by the SERS images collected from chemicals present in the onion and/or reporter molecules attached to the nanoparticles. Our studies show a competitive adsorption of intrinsic bio molecules of the onion layer and reporter molecules. Different spectra from different places of the layer indicate the complex heterogeneous chemical structure of the plant material. The pH‐sensitive reporter molecule para mercapto benzoic acid attached to the nanoparticles allows us to infer pH values inside the extracellular matrix of the onion layer. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

14.
We investigate the plasmonic enhancement arising from bimetallic (Au/Ag) hierarchical structure and address the fundamental issues relating to the design of multilayered nanostructures for surface‐enhanced Raman scattering (SERS) spectroscopy. SERS‐active nanosphere arrays with Ag underlayer and Au overlayer were systematically constructed, with the thickness of each layer altered from 40 to 320 nm. The SERS responses of the resultant bimetallic structures were measured with 2‐naphthalenethiol dye as the test sample. The results confirm the dependency of SERS enhancement on the thickness ratio (Au : Ag). Compared with Au‐arrays, our optimized bimetallic structures, which exhibit nanoprotrusions on the nanospheres, were found to be 2.5 times more SERS enhancing, approaching the enhancement factor of an Ag‐array. The elevated SERS is attributed to the formation of effective hot‐spots associated with increased roughness of the outer Au film, resulting from subsequent sputtering of Au granules on a roughened Ag surface. The morphology and reflectance studies suggest that the SERS hot‐spots are distributed at the junctions of interconnected nanospheres and over the nanosphere surface, depending on the thickness ratio between the Au and Ag layers. We show that, by varying the thickness ratio, it is possible to optimize the SERS enhancement factor without significantly altering the operating plasmon resonance wavelength, which is dictated solely by the size of the underlying nanospheres template. In addition, our bimetallic substrates show long‐term stability compared with previously reported Ag‐arrays, whose SERS efficiency drops by 60% within a week because of oxidation. These findings demonstrate the potential of using such a bimetallic configuration to morphologically optimize any SERS substrate for sensing applications that demand huge SERS enhancement and adequate chemical stability. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

15.
A facile method was developed to fabricate a high sensitive, reproducible and recyclable surface enhanced Raman spectroscopy (SERS) active glass capillary. The Au nanoparticles were synthesized through a seed‐mediated growth approach and then self‐assembled onto the inner wall of glass capillaries. The attached Au nanoparticles were homogeneously coated with thin silica shell by using the silane coupling agent to functionalize the Au surface. By using thiophenol (TP) as SERS probe molecules, the substrate exhibited robust SERS effects. The adsorbed SERS probe molecules could be rapidly and completely removed away by flowing sodium borohydride solution and thus to obtain a refresh Au@SiO2 film‐coated substrate for the cyclic detection on different species. The on‐line detection of TP and malachite green (MG) with different concentrations was performed in the flowing system. The intensities of SERS signals were dependent on concentrations of the detected molecules. The results indicated that the SERS‐active substrate has potential applications on the on‐line qualitative and quasi‐quantitative analysis. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

16.
A unique, geometry‐optimized, surface‐enhanced Raman scattering (SERS) fiber‐optic sensor has been recently developed and built. Though this class of sensors can be very useful in many applications, their use is greatly hindered by the fact that their reusability can hardly be achieved because of the irreversible adsorption of the analyte molecules on the SERS‐active substrate. Different substrates have been tested on our sensor with the purpose of increasing its reusability by means of cleaning procedures or good reproducibility in manufacturing the sensor, keeping, however, the same enhancement. We show that a partial reusability of the sensor is possible using SERS‐active substrates prepared by a standard process of immobilization of silver nanoparticles with 3‐aminopropyltrimethoxysilane. We also show that a fairly good reproducibility can be achieved with a low‐cost substrate realized in a short time by depositing a layer of polyvinyl alcohol (PVA) containing silver nanoparticles on the etched fiber tip. We prove as well that measurements are possible even with nanoparticles dispersed in the analyte solution instead of using a substrate directly made on the sensor tip. Finally, we have successfully tested our sensor with some molecules cited in EFSA (European Food Safety Authority) and FDA (Food and Drug Administration) reports as molecules for which new detection methods are necessary. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

17.
Highly ordered arrays of thiolated β‐cyclodextrin (HS‐β‐CD) functionalized Ag‐nanorods (Ag‐NRs) with plasmonic antennae enhancement of electrical field have been achieved for encapsulation and rapid detection of polychlorinated biphenyls (PCBs). The large‐area ordered arrays of rigid Ag‐NRs supported on copper base were fabricated via porous anodic aluminum oxide (AAO) template‐assisted electrochemical deposition. The inter‐nanorod gaps between the neighboring Ag‐NRs were tuned to sub‐10 nm by thinning the pore‐wall thickness of the AAO template using diluted H3PO4. The nearly perfect large‐area ordered arrays of Ag‐NRs supported on copper base render these systems excellent in surface‐enhanced Raman scattering (SERS) performance with uniform electric field enhancement, as testified by the SERS spectra and Raman mappings of rhodamine 6 G. Furthermore, the Ag‐NRs were functionalized with HS‐β‐CD molecules so as to capture the apolar PCB molecules in the hydrophobic cavity of the CD. Compared to the ordinary undecorated SERS substrates, the HS‐β‐CD modified Ag‐NR arrays exhibit better capture ability and higher sensitivity in rapid detection of PCBs. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

18.
Surface‐enhanced Raman scattering (SERS) is an extremely powerful tool for the analysis of the composition of bimetallic nanoparticle (BNP) surfaces because of the different adsorption schemes adopted by several molecules on different metals, such as Au and Ag. The preparation of BNPs normally implies a change in the plasmonic properties of the core metal. However, for technological applications it could be interesting to synthesize core–shell structures preserving these original plasmonic properties. In this work, we present a facile method for coating colloidal gold nanoparticles (NPs) in solution with a very thin shell of silver. The resulting bimetallic Au@Ag system maintains the optical properties of gold but shows the chemical surface affinity of silver. The effectiveness of the coating method, as well as the progressive silver enrichment of the outermost part of the Au NPs, has been monitored through the SERS spectra of several species (chloride, luteolin, thiophenol and lucigenin), which show different behaviors on gold and silver surfaces. A growth mechanism of the Ag shell is proposed on the basis of the spectroscopic and microscopic data consisting in the formation and deposit of Ag clusters on the Au NP surface. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

19.
Chen  Jian  Huang  Zhenping  Liu  Guiqiang 《Optics and Spectroscopy》2018,125(3):447-453

A facile, efficient and time-saving strategy is proposed to obtain large-area and reliable surface-enhanced Raman scattering (SERS) substrates via artificial heat-treatment of Au nanoparticles or ultrathin Au films sputtered on the silica substrates. Excellent Raman enhancements with the detection limitation down to 10–9 mol/L are obtained due to the highly-dense plasmonic hot-spots and strong plasmons near-field coupling. Decreased intensity of Raman peaks with the increased sputtering time of Au nanoparticles or ultrathin films mainly originates from the excited and hybridized coupling of multiple surface plasmons. The simple fabrication strategy and superior performance make these substrates promising candidates for the development of inexpensive and reliable SERS substrates.

  相似文献   

20.
采用气/液界面自组装方法制备金纳米粒子薄膜作为SERS基底,其结构规整、均匀,利用此基底对三聚氰胺实现高灵敏的半定量分析。此SERS基底的制备是直接于水相合成的金纳米粒子中加人正十二硫醇,金纳米粒子通过硫醇修饰后由亲水性转变成疏水性质,在相界面上自组装为致密金纳米粒子单层膜结构。这种SERS基底不仅制备方法简单,而且应用范围广,除了检测三聚氰胺还可以拓展到其他的非极性的分子如多环芳烃等高灵敏的半定量分析。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号