首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cytosolic calcium (Cai2+) is a second messenger that is important for the regulation of secretion in many types of tissues. Bile duct epithelial cells, or cholangiocytes, are polarized epithelia that line the biliary tree in liver and are responsible for secretion of bicarbonate and other solutes into bile. Cai2+ signaling plays an important role in the regulation of secretion by cholangiocytes, and this review discusses the machinery involved in the formation of Ca2+ signals in cholangiocytes, along with the evidence that these signals regulate ductular secretion. Finally, this review discusses the evidence that impairments in cholangiocyte Ca2+ signaling play a primary role in the pathogenesis of cholestatic disorders, in which hepatic bile secretion is impaired.  相似文献   

2.
细胞凋亡中的钙离子调控   总被引:1,自引:0,他引:1  
凋亡是细胞的一种生理性、主动性的自杀行为,它使机体能够有效清除多余或病态的细胞。作为细胞内普遍存在的第二信使,Ca2 在信号转导过程中发挥重要作用。它能够将细胞感受的刺激转化为其在不同细胞组分间的分布差异及自身浓度的振荡,这种在细胞内和细胞间的波动协调了细胞生命活动的各个方面。以往的研究认为细胞内Ca2 浓度的升高是凋亡进行到后期的结果,而最近的研究发现Ca2 也可以在凋亡通路的各个层次,通过不同的方式精细调控凋亡的进程,这构成了凋亡中复杂的钙调控网络。现对钙离子和线粒体凋亡途径中分子间的复杂联系以及钙调控细胞凋亡研究的最新进展进行综述。  相似文献   

3.
Inositol 1,4,5-trisphosphate 5-phosphatase catalyses the dephosphorylation of the phosphate in the 5-position from inositol 1,4,5-trisphosphate and inositol 1,3,4,5-tetrakisphosphate. One particulate and two soluble enzymes were previously described in bovine brain. In this study, we have obtained a precipitating antiserum against soluble type I inositol 1,4,5-trisphosphate 5-phosphatase. The particulate, but not the soluble type II enzyme, was immunoprecipitated by the serum. Inositol 1,4,5-triphosphate 5-phosphatase activity from crude extracts of rat brain, human platelets and rat liver were immmunoprecipitated by the same antibodies, suggesting the existence of common antigenic determinant among inositol 1,4,5-trisphosphate 5-phosphatases of diverse sources.  相似文献   

4.
Olfactory receptor neurons respond to odorants with G-protein mediated increases in the concentration of cyclic adenosine 3′,5′-monophosphate (cAMP) and/or inositol 1,4,5-triphosphate (InsP3). These two second messengers directly regulate opening of cAMP- and InsP3-regulated conductances localized to the apical transduction compartments of the cell (cilia and olfactory knob). In the presence of physiological concentrations of extracellular Ca2+, these second messenger regulated conductances mediate influx of Ca2+ into the olfactory neuron resulting in large, localized increases in intracellular Ca2+ ([Ca2+]i). A significant advance in our understanding of the molecular mechanisms of olfaction is the recent realization that this increase in [Ca2+]i plays an important role as a “third messenger” in olfactory transduction. Second messenger dependent increases in [Ca2+]i cause opening of ciliary Ca2+-activated Cl, cation and/or K+ channels that can carry a large percentage of the generator current, thus amplifying the signal substantially. As a result of this sequence of events, the generator potential in olfactory neurons can be depolarizing, leading to excitation of the neuron, or hyperpolarizing, leading to suppression of basal action potential firing rate. This dual effect of odorants on olfactory neurons may play an important role in quality coding and in the ability to detect low concentrations of odorants, particularly in complex mixtures. © 1996 John Wiley & Sons, Inc.  相似文献   

5.
Statins are drugs commonly used for the treatment of high plasma cholesterol levels. Beyond these well known lipid-lowering properties, they possess broad-reaching effects in vivo, including antitumor effects. Statins inhibit the growth of multiple tumors. However, the mechanisms remain incompletely understood. Here we show that simvastatin inhibits the proliferation of human leiomyoma cells. This was associated with decreased mitogen-activated protein kinase signaling and multiple changes in cell cycle progression. Simvastatin potently stimulated leiomyoma cell apoptosis in a manner mechanistically dependent upon apoptotic calcium release from voltage-gated calcium channels. Therefore, simvastatin possesses antitumor effects that are dependent upon the apoptotic calcium release machinery.  相似文献   

6.
Abstract: Phosphoinositide-specific phospholipase C (PI-PLC) hydrolyzes the membrane lipid phosphatidylinositol 4,5-bisphosphate (PtdInsP2) to generate 1,2-diacylglycerol (DAG) and inositol 1,4,5-trisphosphate (InsP3). Both molecules serve as second messengers to carry out various cellular functions in mammals. In the present study, we demonstrate that many organic and inorganic nutrients cause the elevation of InsP3 concentrations in cultured soybean cells. This elevation of InsP3 content is sustained for several hours following treatment with Murashige-Skoog (MS) inorganic nutrients. Phosphate and calcium are the major components in MS salts responsible for the increase in InsP3 levels. DNA synthesis, a measure of cell growth, was significantly suppressed by the PI-PLC-specific inhibitor 1-(6-{[17β-3-methoxyestra-1,3,5(10)-trien-17-yl]amino}hexyl)-1H-pyrrole-2,5-dione (U-73122), whereas its near-identical analogue 1-(6-{[17β-3-methoxyestra-1,3,5(10)-trien-17-yl]amino}hexyl)-2,5-pyrrolidinedione did not cause any suppression. Activation of PI-PLC by MS salts increased DNA synthesis and abolished the suppression of DNA synthesis caused by U-73122. Thus, we conclude that the higher cellular concentration of InsP3 induced by MS treatment is involved in DNA synthesis.  相似文献   

7.
Plasmodium falciparum, the most lethal malarial parasite, expresses an ortholog for the protein kinase C (PKC) activator RACK1. However, PKC has not been identified in this parasite, and the mammalian RACK1 can interact with the inositol 1,4,5-trisphosphate receptor (InsP3R). Therefore we investigated whether the Plasmodium ortholog PfRACK also can affect InsP3R-mediated Ca2+ signaling in mammalian cells. GFP-tagged PfRACK and endogenous RACK1 were expressed in a similar distribution within cells. PfRACK inhibited agonist-induced Ca2+ signals in cells expressing each isoform of the InsP3R, and this effect persisted when expression of endogenous RACK1 was reduced by siRNA. PfRACK also inhibited Ca2+ signals induced by photorelease of caged InsP3. These findings provide evidence that PfRACK directly inhibits InsP3-mediated Ca2+ signaling in mammalian cells. Interference with host cell signaling pathways to subvert the host intracellular milieu may be an important mechanism for parasite survival.  相似文献   

8.
Overexpression of the neuronal InsP3kinase-A increases malignancy of different tumor types. Since InsP3kinase-A highly selectively binds Ins(1,4,5)P3, small molecules competing with Ins(1,4,5)P3 provide a promising approach for the therapeutic targeting of InsP3kinase-A. Based on this consideration, we analyzed the binding mechanism of BIP-4 (2-[3,5-dimethyl-1-(4-nitrophenyl)-1H-pyrazol-4-yl]-5, 8-dinitro-1H-benzo[de]isoquinoline-1,3(2H)-dione), a known competitive small-molecule inhibitor of Ins(1,4,5)P3. We tested a total of 80 BIP-4 related compounds in biochemical assays. The results of these experiments revealed that neither the nitrophenyl nor the benzisochinoline group inhibited InsP3kinase-A activity. Moreover, none of the BIP-4 related compounds competed for Ins(1,4,5)P3, demonstrating the high selectivity of BIP-4. To analyze the inhibition mechanism of BIP-4, mutagenesis experiments were performed. The results of these experiments suggest that the nitro groups attached to the benzisochinoline ring compete for binding of Ins(1,4,5)P3 while the nitrophenyl group is associated with amino acids of the ATP-binding pocket. Our results now offer the possibility to optimize BIP-4 to design specific InsP3Kinase-A inhibitors suitable for therapeutic targeting of the enzyme.  相似文献   

9.
Mature oocytes of the annelidan worm Pseudopotamilla occelata have a wide perivitelline space between the oocyte surface and the vitelline envelope and are arrested at the first metaphase (MI). We found a novel two-step Ca2+ increase in normally fertilized oocytes. The first Ca2+ increase originated at a cortex situated underneath a fertilizing sperm on the vitelline envelope, but failed to propagate beyond the center of the oocyte. The first localized Ca2+ increase was then followed by a larger Ca2+ increase starting from the whole oocyte cortex and spreading inwardly to the center. The first localized Ca2+ increase at fertilization was suppressed by the phospholipase C inhibitor U73122, and a similar Ca2+ change was induced by inositol 1,4,5-trisphosphate (IP3). On the other hand, the second global Ca2+ increase in fertilized oocytes was blocked by removal of external Ca2+ or the voltage-gated Ca2+ channel blocker D-600, and a similar Ca2+ change could be mimicked by addition of excess K+ only when external Ca2+ was present. These results suggest that the first localized Ca2+ increase and the second global Ca2+ increase at fertilization are regulated by Ca2+ release from IP3-sensitive stores and Ca2+ influx via voltage-gated Ca2+ channels, respectively. Our data also demonstrated that the localized Ca2+ increase induces the formation of large cytoplasmic protrusion, which helps the fertilizing sperm to enter the oocyte, whereas the following global Ca2+ increase is a prerequisite for the retraction of the cytoplasmic protrusion and the resumption of meiosis from MI.  相似文献   

10.
The incubation of double-labelled [( 14C]-glycerol and [3H]-myoinositol) keratinocytes with 13-cis retinoic acid induced the transient and simultaneous release of [3H]-inositol trisphosphate ([3H]-InsP3) and [14C]-diacylglycerol ([14C]-DAG) indicating that a possible mode of action of this retinoid on murine keratinocytes may be at least in part the early transient release of the two putative messengers (InsP3 and DAG) from phosphatidylinositol-4,5 bisphosphate (PtdIns4, 5P2). In contrast, the preincubation of the keratinocytes with 12-O-tetradecanoylphorbol-13-acetate (TPA) prior to incubation with 13-cis-RA suppressed the 13-cis-RA-induced release of [3H]-InsP3 and [14C]-DAG. The specificity of the TPA effect was established by the lack of effect of the biologically inactive 4 alpha-phorbol 12, 13-didecanoate. Furthermore, the incubation of the TPA-primed keratinocytes with 13-cis-RA caused a delayed and sustained accumulation of [14C]-DAG. An exploration of the source of this late release of [14C]-DAG revealed that this [14C]-DAG was released from non-inositol containing phospholipids, particularly, phosphatidylcholine. This latter DAG released in the TPA-primed cells correlated with the translocation of the cytoplasmic protein kinase C (PKC) activity to the membrane associated PKC activity. Taken together, these results suggest that alteration of PKC activity, presumably induced by DAG released from non-inositol phospholipids, may play a major role in the TPA-induced negative feedback inhibition of 13-cis RA-induced hydrolysis of keratinocyte PtdIns4, 5P2.  相似文献   

11.
12.
We studied the role of the Pmr1-containing Ca(2+) store in COS-1 cells endowed with a functional endoplasmic reticulum. Transfected cells could be recognized by using a green-fluorescent-protein (GFP)-tagged form of Pmr1. Pmr1-GFP fluorescence showed a typical juxtanuclear Golgi-like distribution. Pmr1-GFP-containing cells with functional endoplasmic reticulum responded to 100 microM ATP with baseline Ca(2+) spiking, while non-transfected cells produced an initial Ca(2+) peak followed by a long-lasting plateau. The Ca(2+) signal often appeared after a long latency in Pmr1-GFP-expressing cells. ATP-stimulated Pmr1-GFP-expressing cells with functional endoplasmic reticulum responded after a latency period to extracellular Ca(2+) with a regenerative Ca(2+) signal, while non-transfected control cells responded with an immediate slow rise in free cytosolic Ca(2+) concentration. These results demonstrate the importance of the Pmr1-containing Ca(2+) store in generating or modifying cellular Ca(2+) signals.  相似文献   

13.
Mathematical models simulating the dynamics of calcium redistribution (elicited by experimental interference with the pathways of calcium fluxes) in cellular compartments have been developed, based on a minimal scheme of the pathways of calcium fluxes in nonexcitable cells suspended in calcium-free medium. The models are consistent with available experimental data. All parameters are quantitatively related to the intrinsic properties of calcium adenosine triphosphatases (ATPases) and cellular membranes; there is no interdependence between the parameters. The models can be used as the basis for quantitative analysis and interpretation of experimental data. The activities of plasma membrane and sarcoendoplasmic reticulum calcium ATPases (PMCA and SERCAs) are governed by different mechanisms. PMCA is likely to undergo transitions from inactive to active to “dormant” (not identical to the initial) and back to inactive states, the mean duration of the cycle lasting for minutes or longer. The sequence of the transitions is initiated, presumably, by an increase in cytosolic calcium concentration. The transition of PMCA from inactive to active (at least at low rates of increase in cytosolic calcium concentration) is likely to be slower than that from active to dormant. SERCA, presumably, transits from inactive to active state in response to increases in calcium leakage from calcium stores. Whereas PMCA extrudes excess calcium (a definite quantity of it) in a short pulse, SERCA retakes calcium back into the stores permanently at a high rate. The models presented here may be the best means for the moment to quantitatively relate the dynamics of calcium fluxes in nonexcitable cells with known or putative properties of the mechanisms underlying activation of calcium ATPases.  相似文献   

14.
Calneuron I (CalnI) is a calmodulin-like protein that contains two functional EF-hand motifs at the N-terminal and a hydrophobic segment at the C-terminal. CalnI was cloned from the adult rat cortex and fused with GFP at its N-terminal. When expressed in bovine chromaffin cells, wild-type CalnI was localized at the plasma membrane. However, a mutant that lacked the hydrophobic segment was localized in the cytosol and nucleus, while a Ca2+-binding-deficient mutant was found in the cytosol and at the plasma membrane. Evaluation using the whole-cell patch-clamp technique revealed that Ca2+ currents were inhibited by both wild-type CalnI and the Ca2+-binding-deficient mutant. When the bovine N-type Ca2+ channel was expressed in 293T cells, Ca2+ currents were mostly inhibited by co-expression of CalnI, but not by the mutant without the hydrophobic tail. These results suggest that CalnI attenuates Ca2+ channel activity and that its subcellular localization is important for this effect.  相似文献   

15.
We have used limited trypsin digestion and reactivity with PEG-maleimides (MPEG) to study Ca2+-induced conformational changes of IP3Rs in their native membrane environment. We found that Ca2+ decreased the formation of the 95-kDa C-terminal tryptic fragment when detected by an Ab directed at a C-terminal epitope (CT-1) but not with an Ab recognizing a protected intraluminal epitope. This suggests that Ca2+ induces a conformational change in the IP3R that allows trypsin to cleave the C-terminal epitope. Half-maximal effects of Ca2+ were observed at ∼0.5 μm and was sensitive to inhibition by IP3. Ca2+ also stimulated the reaction of MPEG-5 with an endogenous thiol in the 95-kDa fragment. This effect was eliminated when six closely spaced cysteine residues proximal to the transmembrane domains were mutated (C2000S, C2008S, C2010S, C2043S, C2047S, and C2053S) or when the N-terminal suppressor domain (amino acids 1–225) was deleted. A cysteine substitution mutant introduced at the C-terminal residue (A2749C) was freely accessible to MPEG-5 or MPEG-20 in the absence of Ca2+. However, cysteine substitution mutants in the interior of the tail were poorly reactive with MPEG-5, although reactivity was enhanced by Ca2+. We conclude the following: a) that large conformational changes induced by Ca2+ can be detected in IP3Rs in situ; b) these changes may be driven by Ca2+ binding to the N-terminal suppressor domain and expose a group of closely spaced endogenous thiols in the channel domain; and c) that the C-terminal cytosol-exposed tail of the IP3R may be relatively inaccessible to regulatory proteins unless Ca2+ is present.  相似文献   

16.
It has long been known that many bone diseases, including osteoporosis, involve abnormalities in osteoclastic bone resorption. As a result, there has been intense study of the mechanisms that regulate both the differentiation and bone resorbing function of osteoclast cells. Calcium (Ca2+) signaling appears to play a critical role in the differentiation and functions of osteoclasts. Cytoplasmic Ca2+ oscillations occur during RANKL-mediated osteoclastogenesis. Ca2+ oscillations provide a digital Ca2+ signal that induces osteoclasts to up-regulate and autoamplify nuclear factor of activated T cells c1 (NFATc1), a Ca2+/calcineurin-dependent master regulator of osteoclastogenesis. Here we review previous studies on Ca2+ signaling in osteoclasts as well as recent breakthroughs in understanding the basis of RANKL-induced Ca2+ oscillations, and we discuss possible molecular players in this specialized Ca2+ response that appears pivotal for normal bone function. This article is part of a Special Issue entitled: 11th European Symposium on Calcium.  相似文献   

17.
Commercial solvents such as toluene are commonly used as drugs of abuse by children and adolescents. The cellular and molecular sites and mechanisms of actions of these compounds are not well studied but their effects on behavior resemble those of central nervous system depressants such as alcohol, barbiturates and benzodiazepines. In this study, the effects of toluene on voltage-sensitive calcium channels (VSCCs) were measured in pheochromocytoma cells. The KCl-induced rise in intracellular calcium as measured by calcium imaging was almost completely blocked by the dihydropyridine calcium channel antagonist nifedipine verifying that undifferentiated pheochromocytoma cells express mainly the L-type of calcium channel. Toluene (0.3–3000 μM) by itself did not affect intracellular calcium levels in resting cells but dose-dependently inhibited the KCl-induced rise in calcium. This inhibition was substantially reversed upon washout of the toluene-containing solution. KCl-dependent increases in intracellular calcium in cells differentiated with nerve growth factor (NGF) were largely insensitive to nifedipine. Toluene produced a greater inhibition of the KCl response in NGF treated cells as compared with undifferentiated cells. A similar finding was obtained when whole-cell patch-clamp-electrophysiology was used to directly monitor the effects of toluene on voltage-activated calcium currents in undifferentiated and differentiated cells. These results show that dihydropyridine sensitive and insensitive calcium channels are inhibited by toluene and may represent important sites of action for this compound.  相似文献   

18.
Dynamics of changes in cytosolic calcium concentration resulting from facilitation of calcium leakage from the stores and (or) blocking the pathways of its reuptake back into the stores or extrusion out of the cell (or both) have been investigated experimentally. It has been found that: (a) no mechanisms other than the membrane leakage, PMCA or SERCA, are involved in the discharge of calcium stores and calcium extrusion or reuptake; (b) the discharge of calcium stores in the absence of both its extrusion and reuptake back into the stores depends only on membrane leakage, the asymptotic calcium concentration in cytosol depending only on the initial content of the stores and being independent of the leakage; (c) the dynamics of the activity of both PMCA and SERCA depend on the initial rate of calcium influx, the dynamics differing from each other at high initial rates of calcium influx; (d) whereas there is no observable background activity of PMCA, background activity of SERCA is observed.  相似文献   

19.
The aim of this work was to obtain experimental data depending on the properties of calcium stores and SERCAs, to analyse these data in terms of the models based on simulation of the cellular compartments as communicating vessels, and to relate this way the data to the above properties. The main characteristics of the stores and corresponding SERCAs have been estimated. Calcium content in the DTS is ∼1.5 × 106 ions per cell, that in the acidic stores, ∼0.64 × 106 ions per cell. The rate constant of background calcium leakage from the DTS is ∼0.0033 s−1, that from the acidic stores, ∼0.1 s−1. The background activity of SERCA2b is ∼0.22 × 106 s−1 ions per cell, that of SERCA3, ∼2.5 × 106 s−1 ions per cell. The properties of both calcium stores and the SERCAs and the characteristics found might be related to physiological or pathological state of the cells.  相似文献   

20.
Nicotinic acid adenine dinucleotide phosphate (NAADP) is a potent second messenger that mobilizes Ca(2+) from the acidic endolysosomes by activation of the two-pore channels TPC1 and TPC2. The channel properties of human TPC1 have not been studied before, and its cellular function is not known. In the present study, we characterized TPC1 incorporated into lipid bilayers. The native and recombinant TPC1 channels are activated by NAADP. TPC1 activity requires acidic luminal pH and high luminal Ca(2+). With Ba(2+) as the permeable ion, luminal Ca(2+) activates TPC1 with an apparent K(m) of 180 μm. TPC1 operates in two tightly coupled conductance states of 47 ± 8 and 200 ± 9 picosiemens. Importantly, opening of the large conductance markedly increases the small conductance mean open time. Changes in membrane potential from 0 to -60 mV increased linearly both the small and the large conductances and NP(o), indicating that TPC1 is regulated by voltage. Intriguingly, the apparent affinity for activation of TPC1 by its ligand NAADP is not constant. Rather, hyperpolarization increases the apparent affinity of TPC1 for NAADP by 10 nm/mV. The concerted regulation of TPC1 activity by luminal Ca(2+) and by membrane potential thus provides a potential mechanism to explain NAADP-induced Ca(2+) oscillations. These findings reveal unique properties of TPC1 to explain its role in Ca(2+) oscillations and cell function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号