首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
β2-adrenergic receptor (β2AR) agonists (β2-agonist) are the most commonly used therapy for acute relief in asthma, but chronic use of these bronchodilators paradoxically exacerbates airway hyper-responsiveness. Activation of βARs by β-agonist leads to desensitization (inactivation) by phosphorylation through G-protein coupled receptor kinases (GRKs) which mediate β-arrestin binding and βAR internalization. Resensitization occurs by dephosphorylation of the endosomal βARs which recycle back to the plasma membrane as agonist-ready receptors. To determine whether the loss in β-agonist response in asthma is due to altered βAR desensitization and/or resensitization, we used primary human airway smooth muscle cells (HASMCs) isolated from the lungs of non-asthmatic and fatal-asthmatic subjects. Asthmatic HASMCs have diminished adenylyl cyclase activity and cAMP response to β-agonist as compared to non-asthmatic HASMCs. Confocal microscopy showed significant accumulation of phosphorylated β2ARs in asthmatic HASMCs. Systematic analysis of desensitization components including GRKs and β-arrestin showed no appreciable differences between asthmatic and non-asthmatic HASMCs. However, asthmatic HASMC showed significant increase in PI3Kγ activity and was associated with reduction in PP2A activity. Since reduction in PP2A activity could alter receptor resensitization, endosomal fractions were isolated to assess the agonist ready β2ARs as a measure of resensitization. Despite significant accumulation of β2ARs in the endosomes of asthmatic HASMCs, endosomal β2ARs cannot robustly activate adenylyl cyclase. Furthermore, endosomes from asthmatic HASMCs are associated with significant increase in PI3Kγ and reduced PP2A activity that inhibits β2AR resensitization. Our study shows that resensitization, a process considered to be a homeostasis maintaining passive process is inhibited in asthmatic HASMCs contributing to β2AR dysfunction which may underlie asthma pathophysiology and loss in asthma control.  相似文献   

2.
The administration of exogenous β-hydroxybutyrate (β-HB), as well as fasting and caloric restriction, is a condition associated with β-HB abundance and decreased appetite in animals. Increased β-HB and decreased appetite exist simultaneously in some diseases, such as bovine left displaced abomasums (LDA) and human chronic gastritis. However, the effects of β-HB on stomach injuries have not been explored. To elucidate the possible effects of exogenous β-HB on the stomach, mice were injected intraperitoneally with β-HB, and bovine abomasum smooth muscle cells (BSMCs) were treated with different concentrations of β-HB. We found that β-HB induced BSMCs endoplasmic reticulum- and mitochondria-mediated apoptotic cell death. β-HB promoted Bax expression and caspase-12, -9, and -3 activation while blocking Bcl-2 expression. β-HB also promoted AIF, EndoG release and p53 expression. β-HB acted on key molecules in the apoptotic cell death pathway and increased p38 and c-June NH2-terminal kinase phosphorylation while inhibiting ERK phosphorylation and PCNA expression. β-HB upregulated P27 and P21 mRNA levels while downregulating cyclin and CDK mRNA levels, arresting the cell cycle. These results suggest that BSMCs treated with β-HB can induce oxidative stress, which can be prevented by intracellular calcium chelators BAPTA/AM but not antioxidant NAC. Additionally, these results suggest that β-HB causes ROS generation through a Ca2+-dependent mechanism and that intracellular Ca2+ levels play a critical role in β-HB -induced apoptotic cell death. The impact of β-HB on programmed cell death and oxidative stress in vivo was confirmed in murine experiments. For the first time, we show oxidative stress effects of β-HB on smooth muscle. We propose that β-HB is a possible cause of some stomach diseases, including bovine LDA.  相似文献   

3.

Background

We aimed to test the antiproliferative effect of acetylsalicylic acid (ASA) on vascular smooth muscle cells (VSMC) from bypass surgery patients and the role of transforming growth factor beta 1 (TGF-β1).

Methodology/Principal Findings

VSMC were isolated from remaining internal mammary artery from patients who underwent bypass surgery. Cell proliferation and DNA fragmentation were assessed by ELISA. Protein expression was assessed by Western blot. ASA inhibited BrdU incorporation at 2 mM. Anti-TGF-β1 was able to reverse this effect. ASA (2 mM) induced TGF-β1 secretion; however it was unable to induce Smad activation. ASA increased p38MAPK phosphorylation in a TGF-β1-independent manner. Anti-CD105 (endoglin) was unable to reverse the antiproliferative effect of ASA. Pre-surgical serum levels of TGF-β1 in patients who took at antiplatelet doses ASA were assessed by ELISA and remained unchanged.

Conclusions/Significance

In vitro antiproliferative effects of aspirin (at antiinflammatory concentration) on human VSMC obtained from bypass patients are mediated by TGF-β1 and p38MAPK. Pre-surgical serum levels of TGF- β1 from bypass patients who took aspirin at antiplatelet doses did not change.  相似文献   

4.
Rhinovirus (RV) infections cause exacerbations and development of severe asthma highlighting the importance of antiviral interferon (IFN) defence by airway cells. Little is known about bronchial smooth muscle cell (BSMC) production of IFNs and whether BSMCs have dsRNA-sensing receptors besides TLR3. dsRNA is a rhinoviral replication intermediate and necrotic cell effect mimic that mediates innate immune responses in bronchial epithelial cells. We have explored dsRNA-evoked IFN-β and IFN-λ1 production in human BSMCs and potential involvement of TLR3 and RIG-I-like receptors (RLRs). Primary BSMCs were stimulated with 0.1–10 µg/ml dsRNA, 0.1–1 µg/ml dsRNA in complex with the transfection agent LyoVec (dsRNA/LyoVec; selectively activating cytosolic RLRs) or infected with 0.05–0.5 MOI RV1B. Both dsRNA stimuli evoked early (3 h), concentration-dependent IFN-β and IFN-λ1 mRNA expression, which with dsRNA/LyoVec was much greater, and with dsRNA was much less, after 24 h. The effects were inhibited by dexamethasone. Further, dsRNA and dsRNA/LyoVec concentration-dependently upregulated RIG-I and MDA5 mRNA and protein. dsRNA and particularly dsRNA/LyoVec caused IFN-β and IFN-λ1 protein production (24 h). dsRNA- but not dsRNA/LyoVec-induced IFN expression was partly inhibited by chloroquine that suppresses endosomal TLR3 activation. RV1B dose-dependently increased BSMC expression of RIG-I, MDA5, IFN-β, and IFN-λ1 mRNA. We suggest that BSMCs express functional RLRs and that both RLRs and TLR3 are involved in viral stimulus-induced BSMC expression of IFN-β and IFN-λ1.  相似文献   

5.

Background

β2-adrenoceptor agonists elicit bronchodilator responses by binding to β2-adrenoceptors on airway smooth muscle (ASM). In vivo, the time between drug administration and clinically relevant bronchodilation varies significantly depending on the agonist used. Our aim was to utilise a fluorescent cyclic AMP reporter probe to study the temporal profile of β2-adrenoceptor-mediated signaling induced by isoproterenol and a range of clinically relevant agonists in human primary ASM (hASM) cells by using a modified Epac protein fused to CFP and a variant of YFP.

Methods

Cells were imaged in real time using a spinning disk confocal system which allowed rapid and direct quantification of emission ratio imaging following direct addition of β2-adrenoceptor agonists (isoproterenol, salbutamol, salmeterol, indacaterol and formoterol) into the extracellular buffer. For pharmacological comparison a radiolabeling assay for whole cell cyclic AMP formation was used.

Results

Temporal analysis revealed that in hASM cells the β2-adrenoceptor agonists studied did not vary significantly in the onset of initiation. However, once a response was initiated, significant differences were observed in the rate of this response with indacaterol and isoproterenol inducing a significantly faster response than salmeterol. Contrary to expectation, reducing the concentration of isoproterenol resulted in a significantly faster initiation of response.

Conclusions

We conclude that confocal imaging of the Epac-based probe is a powerful tool to explore β2-adrenoceptor signaling in primary cells. The ability to analyse the kinetics of clinically used β2-adrenoceptor agonists in real time and at a single cell level gives an insight into their possible kinetics once they have reached ASM cells in vivo.  相似文献   

6.
Neuropathological symptoms of Alzheimer''s disease appear in advances stages, once neuronal damage arises. Nevertheless, recent studies demonstrate that in early asymptomatic stages, ß-amyloid peptide damages the cerebral microvasculature through mechanisms that involve an increase in reactive oxygen species and calcium, which induces necrosis and apoptosis of endothelial cells, leading to cerebrovascular dysfunction. The goal of our work is to study the potential preventive effect of the lipophilic antioxidant coenzyme Q (CoQ) against ß-amyloid-induced damage on human endothelial cells. We analyzed the protective effect of CoQ against Aβ-induced injury in human umbilical vein endothelial cells (HUVECs) using fluorescence and confocal microscopy, biochemical techniques and RMN-based metabolomics. Our results show that CoQ pretreatment of HUVECs delayed Aβ incorporation into the plasma membrane and mitochondria. Moreover, CoQ reduced the influx of extracellular Ca2+, and Ca2+ release from mitochondria due to opening the mitochondrial transition pore after β-amyloid administration, in addition to decreasing O2 .− and H2O2 levels. Pretreatment with CoQ also prevented ß-amyloid-induced HUVECs necrosis and apoptosis, restored their ability to proliferate, migrate and form tube-like structures in vitro, which is mirrored by a restoration of the cell metabolic profile to control levels. CoQ protected endothelial cells from Aβ-induced injury at physiological concentrations in human plasma after oral CoQ supplementation and thus could be a promising molecule to protect endothelial cells against amyloid angiopathy.  相似文献   

7.

Background

Atherosclerosis is a complex pathological condition caused by a number of mechanisms including the accelerated proliferation of vascular smooth muscle cells (VSMCs). Diabetes is likely to be an important risk factor for atherosclerosis, as hyperglycemia induces vascular smooth muscle cell (VSMC) proliferation and migration and may thus contribute to the formation of atherosclerotic lesions. This study was performed to investigate whether PGC-1α, a PPARγ coactivator and metabolic master regulator, plays a role in regulating VSMC proliferation and migration induced by high glucose.

Methodology/Principal Findings

PGC-1α mRNA levels are decreased in blood vessel media of STZ-treated diabetic rats. In cultured rat VSMCs, high glucose dose-dependently inhibits PGC-1α mRNA expression. Overexpression of PGC-1α either by infection with adenovirus, or by stimulation with palmitic acid, significantly reduces high glucose-induced VSMC proliferation and migration. In contrast, suppression of PGC-1α by siRNA mimics the effects of glucose on VSMCs. Finally, mechanistic studies suggest that PGC-1α-mediated inhibition of VSMC proliferation and migration is regulated through preventing ERK1/2 phosphorylation.

Conclusions/Significance

These results indicate that PGC-1α is a key regulator of high glucose-induced proliferation and migration in VSMCs, and suggest that elevation of PGC-1α in VSMC could be a useful strategy in preventing the development of diabetic atherosclerosis.  相似文献   

8.
9.
The cytokine and potent angiogenic factor vascular endothelial growth factor (VEGF) plays an important role in airway remodelling in various airway diseases such as idiopathic pulmonary fibrosis, pulmonary hypertension, lung cancer, asthma and chronic obstructive pulmonary disease (COPD). The effect of cigarette-smoking on VEGF expression, the modulatory role of extracellular signal-regulated kinase (ERK)-1,-2, p38mitogen-activated protein kinase (MAPK), histone acetylation and the anti-inflammatory effect of dexamethasone on TNFα-induced VEGF expression were examined in human airway smooth muscle cells (HASMC) of five non-smokers, 17 smokers without airflow limitation and 15 smokers with COPD. TNFα increased VEGF expression 5.4-fold and 4.0-fold in HASMC from non-smokers and smokers without airflow limitation, respectively, but only 2.5-fold in HASMC from smokers with COPD compared with non-stimulated HASMC. VEGF production was dependent on phosphorylation of ERK-1,-2 and p38MAPK, as was shown by examining the effects of PD 098059 (10 μM), an inhibitor of the upstream activator of MAPKkinase (MKK)-1, and SB 203580 (10 μM), an inhibitor of p38MAPK; there were no differences between non-smokers, smokers without airflow limitation and smokers with COPD in this respect. Dexamethasone (DEX; 10−12–10−4 M) reduced TNFα-induced phosphorylation of ERK-1/-2 and prevented TNFα-induced VEGF generation without differences between non-smokers, smokers with and without COPD. There was an additional inhibitory effect of DEX (10−12 M) on VEGF-release when PD 098059 was added. The basal and TNFα-induced acetylation status of the VEGF-promoter (chromatin immunoprecipitation [ChIP] assay) was increased in HASMC from smokers with COPD compared with smokers without airflow limitation and non-smokers. In comparison to non-stimulated HASMC, TNFα decreased the acetylation status of the VEGF-promoter by ∼46% and ∼43% in HASMC from non-smokers and smokers without COPD compared with ∼68% in HASMC from smokers with COPD. The data suggest that HASMC express VEGF in response to TNFα and that this may be reduced in HASMC of smokers with COPD in a smoking-independent manner. VEGF expression is directly modulated by phosphorylation of ERK-1,-2 and p38MAPK and by histone acetylation and the acetylation status of the VEGF gene is increased in HASMC of smokers with COPD in a smoking-independent manner. TNFα reduced the acetylation status of the VEGF promoter in HASMC.  相似文献   

10.
The co-culturing of insulinoma and islet-derived endothelial cell (iEC) lines results in the spontaneous formation of free-floating pseudoislets (PIs). We previously showed that iEC-induced PIs display improved insulin expression and secretion in response to glucose stimulation. This improvement was associated with a de novo deposition of extracellular matrix (ECM) proteins by iECs in and around the PIs. Here, iEC-induced PIs were used to study the expression and posttranslational modification of the ECM receptor integrin β1. A wide array of integrin β subunits was detected in βTC3 and NIT-1 insulinomas as well as in primary islets, with integrin β1 mRNA and protein detected in all three cell types. Interestingly, the formation of iEC-induced PIs altered the glycosylation patterns of integrin β1, resulting in a higher molecular weight form of the receptor. This form was found in native pancreas but was completely absent in monolayer β-cells. Fluorescence-activated cell sorting analysis of monolayers and PIs revealed a higher expression of integrin β1 in PIs. Antibody-mediated blocking of integrin β1 led to alterations in β-cell morphology, reduced insulin gene expression, and enhanced glucose secretion under baseline conditions. These results suggest that iEC-induced PI formation may alter integrin β1 expression and posttranslational modification by enhancing glycosylation, thereby providing a more physiological culture system for studying integrin-ECM interactions in β cells.  相似文献   

11.
Angiogenesis and microvascular leakage are features of chronic inflammatory diseases of which molecular mechanisms are poorly understood. We investigated the effects of interleukin-1β (IL-1β) on the expression and secretion of vascular endothelial growth factor (VEGF) and placenta growth factor (PlGF) in porcine airway smooth muscle cells (PASMC) in relation to a nitric oxide (NO) pathway. Serum-deprived (48 h) PASMC were stimulated with IL-1β alone or with NO donor, l-arginine and/or NO synthase inhibitor l-NAME for 4 and 24 h. IL-1β did not affect PlGF release, but augmented VEGF release (2.4-fold) after 24 h. VEGF release was inhibited by l-NAME (531.8 ± 52 pg/ml), but restored and further elevated by l-arginine (1,529 ± 287 pg/ml). IL-1β up-regulated VEGF mRNA (1.8-fold) and this response was attenuated by l-NAME (1.1-fold) and augmented by l-arginine (3.8-fold) at 4 h. Restoration of a NO pathway by l-arginine in l-NAME-treated cells resulted in elevated VEGF mRNA levels (2.2-fold). [3H]Thymidine incorporation assay revealed enhanced porcine pulmonary artery endothelial cell proliferation in response to IL-1β, VEGF and PlGF, and this mitogenic effect was not influenced via the NO pathway. Our results suggest that a NO pathway modulates VEGF synthesis during inflammation contributing to bronchial angiogenesis and vascular leakage.  相似文献   

12.
The periodontal ligament (PDL) is a fibrous connective tissue that attaches the tooth to the alveolar bone. We previously demonstrated the ability of PDL fibroblast-like cells to construct an endothelial cell (EC) marker-positive blood vessel-like structure, indicating the potential of fibroblastic lineage cells in PDL tissue as precursors of endothelial progenitor cells (EPCs) to facilitate the construction of a vascular system around damaged PDL tissue. A vascular regeneration around PDL tissue needs proliferation of vascular progenitor cells and the subsequent differentiation of the cells. Transforming growth factor-β (TGF-β) is known as an inducer of endothelial-mesenchymal transition (EndMT), however, it remains to be clarified what kinds of TGF-β signals affect growth and mesenchymal differentiation of PDL-derived EPC-like fibroblastic cells. Here, we demonstrated that TGF-β1 not only suppressed the proliferation of the PDL-derived EPC-like fibroblastic cells, but also induced smooth muscle cell (SMC) markers expression in the cells. On the other hand, TGF-β1 stimulation suppressed EC marker expression. Intriguingly, overexpression of Smad7, an inhibitor for TGF-β-induced Smad-dependent signaling, suppressed the TGF-β1-induced growth inhibition and SMC markers expression, but did not the TGF-β1-induced downregulation of EC marker expression. In contrast, p38 mitogen-activated protein kinase (MAPK) inhibitor SB 203580 suppressed the TGF-β1-induced downregulation of EC marker expression. In addition, the TGF-β1-induced SMC markers expression of the PDL-derived cells was reversed upon stimulation with fibroblast growth factor (FGF), suggesting that the TGF-β1 might not induce terminal SMC differentiation of the EPC-like fibroblastic cells. Thus, TGF-β1 not only negatively controls the growth of PDL-derived EPC-like fibroblastic cells via a Smad-dependent manner but also positively controls the SMC-differentiation of the cells possibly at the early stage of the translineage commitment via Smad- and p38 MAPK-dependent manners.  相似文献   

13.

Background

Detection of enzyme activity or transgene expression offers potential insight into developmental biology, disease progression, and potentially personalized medicine. Historically, the lacZ gene encoding the enzyme β-galactosidase has been the most common reporter gene and many chromogenic and fluorogenic substrates are well established, but limited to histology or in vitro assays. We now present a novel approach for in vivo detection of β-galactosidase using optical imaging to detect light emission following administration of the chemiluminescent 1,2-dioxetane substrate Galacto-Light PlusTM.

Methodology and Principal Findings

B-gal activity was visualized in stably transfected human MCF7-lacZ tumors growing in mice. LacZ tumors were identified versus contralateral wild type tumors as controls, based on two- to tenfold greater light emission following direct intra tumoral or intravenous administration of reporter substrate. The 1,2-dioxetane substrate is commercially available as a kit for microplate-based assays for β-gal detection, and we have adapted it for in vivo application. Typically, 100 µl substrate mixture was administered intravenously and light emission was detected from the lacZ tumor immediately with gradual decrease over the next 20 mins. Imaging was also undertaken in transgenic ROSA26 mice following subcutaneous or intravenous injection of substrate mixture.

Conclusion and Significance

Light emission was detectable using standard instrumentation designed for more traditional bioluminescent imaging. Use of 1,2-dioxetane substrates to detect enzyme activity offers a new paradigm for non-invasive biochemistry in vivo.  相似文献   

14.
Abstract

We have shown that binding of 3H-dihydroalprenolol ([3H] DHA) to DDT1 MF-2 cells and cell membranes was of high affinity, saturable, stereoselective and reversible. The [3H]DHA dissociation constants were 0.63 ± 0.15 nM (n=6) and 0.83 ± 0.04 nM (n=5) for intact cells and cell membranes, respectively, with a binding site concentration for cells of 27,300 ± 5,200 sites/ cell (n=6) and for membranes 468 ± 24 fmoles/mg protein (n=5). The order of agonist competition for the [3H]-DHA binding site of DDT1 cell membranes was isoproterenol (Ki = 0.20 ± 0.07 μM) > epinephrine (Ki = 0.4 ± 0.2 μM) > norepinephrine (Ki = 66.5 ± 5.15 μM) consistent with a β2-selective receptor interaction. Zinterol, a β2-selective antagonist, (Ki = 0.05 ± 0.01 μM) was 18x more effective than metoprolol, a β1-selective antagonist (Ki = 0.9 ± 0.1 μM), in competing for the DHA binding site. A nonlinear iterative curve fitting analysis of zinterol and metoprolol binding isotherms indicated that (p>0.05) DDT1 cells possess a pure population of β2-adrenergic receptors. Finally, we have shown that DDT1 MF-2 cell β2-adrenergic receptor is functionally coupled to adenylate cyclase via a G/F protein complex as demonstrated in part by a guanine nucleotide requirement for isoproterenol stimulation of adenylate cyclase activity. In addition, guanine nucleotide mediated a reduction in the affinities of isoproterenol and epinephrine for the [3H]DHA binding site.  相似文献   

15.
Abstract

DNA molecules suitable for amplification by Polymerase Chain Reaction were obtained by immobilizing whole blood or isolated leukocytes and incubating the immobilized cells for one hour with the known non‐enzymatic solution described for preparing intact DNA molecules for PFGE. Cell immobilization was done in agarose gels and punches of 1.2 mm of diameter had the amount of DNA needed for amplifying chromosomal and mitochondrial sequences, many times. The approach was successfully used in preparing DNA molecules from multiple samples in flat‐bottom 96‐well ELISA plates. The procedure is simple and does not demand special conditions for sample transportation or conservation; thus, it should be useful to collect and process samples under field conditions in epidemiological studies.  相似文献   

16.
A gene of β-galactosidase from Bacillus circulans ATCC 31382 was cloned and sequenced on the basis of N-terminal and internal peptide sequences isolated from a commercial enzyme preparation, Biolacta®. Using the cloned gene, recombinant β-galactosidase and its deletion mutants were overexpressed as His-tagged proteins in Escherichia coli cells and the enzymes expressed were characterized.  相似文献   

17.
We have established a novel in vitro co-culture system of human brain endothelial cells (HBEC), Plasmodium falciparum parasitised red blood cells (iRBC) and peripheral blood mononuclear cells (PBMC), in order to simulate the chief pathophysiological lesion in cerebral malaria (CM). This approach has revealed a previously unsuspected pro-inflammatory role of the endothelial cell through potentiating the production of interferon (IFN)-γ by PBMC and concurrent reduction of interleukin (IL)-10. The IFN-γ increased the expression of CXCL10 and intercellular adhesion molecule (ICAM)-1, both of which have been shown to be crucial in the pathogenesis of CM. There was a shift in the ratio of IL-10:IFN-γ protein from >1 to <1 in the presence of HBEC, associated with the pro-inflammatory process in this model. For this to occur, a direct contact between PBMC and HBEC, but not PBMC and iRBC, was necessary. These results support HBEC playing an active role in the pathogenesis of CM. Thus, if these findings reflect the pathogenesis of CM, inhibition of HBEC and PBMC interactions might reduce the occurrence, or improve the prognosis, of the condition.  相似文献   

18.
Despite the substantial knowledge on the antidiabetic, antiobesity and antihypertensive actions of tungstate, information on its primary target/s is scarce. Tungstate activates both the ERK1/2 pathway and the vascular voltage- and Ca2+-dependent large-conductance BKαβ1 potassium channel, which modulates vascular smooth muscle cell (VSMC) proliferation and function, respectively. Here, we have assessed the possible involvement of BKαβ1 channels in the tungstate-induced ERK phosphorylation and its relevance for VSMC proliferation. Western blot analysis in HEK cell lines showed that expression of vascular BKαβ1 channels potentiates the tungstate-induced ERK1/2 phosphorylation in a Gi/o protein-dependent manner. Tungstate activated BKαβ1 channels upstream of G proteins as channel activation was not altered by the inhibition of G proteins with GDPβS or pertussis toxin. Moreover, analysis of Gi/o protein activation measuring the FRET among heterologously expressed Gi protein subunits suggested that tungstate-targeting of BKαβ1 channels promotes G protein activation. Single channel recordings on VSMCs from wild-type and β1-knockout mice indicated that the presence of the regulatory β1 subunit was essential for the tungstate-mediated activation of BK channels in VSMCs. Moreover, the specific BK channel blocker iberiotoxin lowered tungstate-induced ERK phosphorylation by 55% and partially reverted (by 51%) the tungstate-produced reduction of platelet-derived growth factor (PDGF)-induced proliferation in human VSMCs. Our observations indicate that tungstate-targeting of BKαβ1 channels promotes activation of PTX-sensitive Gi proteins to enhance the tungstate-induced phosphorylation of ERK, and inhibits PDGF-stimulated cell proliferation in human vascular smooth muscle.  相似文献   

19.
A Streptococcus mitis genomic DNA fragment carrying the SMT1224 gene encoding a putative β-galactosidase was identified, cloned, and expressed in Escherichia coli. This gene encodes a protein 2,411 amino acids long with a predicted molecular mass of 268 kDa. The deduced protein contains an N-terminal signal peptide and a C-terminal choline-binding domain consisting of five consensus repeats, which facilitates the anchoring of the secreted enzyme to the cell wall. The choline-binding capacity of the protein facilitates its purification using DEAE-cellulose affinity chromatography, although its complete purification was achieved by constructing a His-tagged fusion protein. The recombinant protein was characterized as a monomeric β-galactosidase showing a specific activity of around 2,500 U/mg of protein, with optimum temperature and pH ranges of 30 to 40°C and 6.0 to 6.5, respectively. Enzyme activity is not inhibited by glucose, even at 200 mM, and remains highly stable in solution or immobilized at room temperature in the absence of protein stabilizers. In S. mitis, the enzyme was located attached to the cell surface, but a significant activity was also detected in the culture medium. This novel enzyme represents the first β-galactosidase having a modular structure with a choline-binding domain, a peculiar property that can also be useful for some biotechnological applications.Streptococcus mitis belongs to the viridans group of streptococci and is a relevant microorganism because it is both an opportunistic pathogen and phylogenetically close to Streptococcus pneumoniae, a major respiratory human pathogen. Although S. mitis isolates usually produce only mild infections, some S. mitis strains have acquired increased virulence and are one of the main causes of infectious endocarditis (15, 36). Remarkably, S. mitis, like only a few other streptococci, displays phosphorylcholine residues in its cellular envelope (3). This aminoalcohol is used for the anchorage of proteins belonging to the so-called “choline-binding proteins” (CBPs), which fulfill important physiological functions in these bacteria. CBPs bind to phosphorylcholine residues present in the teichoic and lipoteichoic acids located at the surface of S. pneumoniae and some streptococci of the mitis group. CBPs share a modular organization consisting of a biologically active domain and a conserved choline-binding domain (CBD), which contains 6 to 18 imperfect 20-amino-acid tandem repeats each located either at the carboxy- or amino-terminal ends of the proteins (26). This CBD is able to specifically bind to choline or its structural analogues like DEAE (diethylaminoethanol), which permits purification by affinity chromatography in a single step using DEAE-cellulose supports (38). Crystallographic studies of CBPs have shown that a typical CBD consists of several β-hairpins organized as a left-handed superhelix and that the linkage of CBPs to the choline-containing cell wall substrate is carried out through the binding of choline residues to the interface of two consecutive choline-binding repeats, named choline-binding sites (9, 13, 14).β-d-Galactosidases (β-d-galactoside galactohydrolase; EC 3.2.1.23) constitute a large family of proteins that cleave the glycosidic bond between two or more carbohydrates or between a carbohydrate and a noncarbohydrate moiety, e.g., lactose and related chromogens, like o-nitrophenyl-β-d-galactopyranoside (ONPG), p-nitrophenyl-β-d-galactopyranoside (PNPG), or 6-bromo-2-naphthyl-galactopyranoside. β-d-galactosidases belong to the glycosyl hydrolase (GH) superfamily, which contains 114 families (see http://www.CAZY.org) classified on the basis of amino acid sequence similarity (12). The enzymes exhibiting β-galactosidase activity are currently classified within four different families: GH-1, GH-2, GH-35, and GH-42. β-Galactosidases are widely distributed in nature and are present in numerous microorganisms (yeasts, fungi, bacteria, and archaea), plants, and animals (34, 44). These enzymes are of great interest for several industrial or biotechnological processes; the hydrolytic activity has been applied in the food industry for decades to reduce the lactose content of milk products in order to circumvent lactose intolerance, which is prevalent in more than half of the world''s population (27). More recently, interest in β-galactosidases has increased due to their ability to synthesize β-galactosyl derivatives that have received a great deal of attention owing to their important roles in many biological processes (27).In this study, we report the purification and biochemical characterization of a peculiar β-galactosidase encoded by the SMT1224 gene of S. mitis that represents a new type of β-galactosidase within this paradigmatic enzyme family.  相似文献   

20.
Rhinovirus (RV) infections account for approximately two thirds of all virus-induced asthma exacerbations and often result in an impaired response to β2 agonist therapy. Using an in vitro model of RV infection, we investigated the mechanisms underlying RV-induced β2 adrenoceptor desensitization in primary human airway smooth muscle cells (ASMC). RV infection of primary human bronchial epithelial cells (HBEC) for 24 hours produced conditioned medium that caused β2 adrenoceptor desensitization on ASMCs without an effect on ASMCs viability. Less than 3 kDa size fractionation together with trypsin digestion of RV-induced conditioned medium did not prevent β2 adrenoceptor desensitization, suggesting it could potentially be mediated by a small peptide or lipid. RV infection of BECs, ASMCs and fibroblasts produced prostaglandins, of which PGE2, PGF and PGI2 had the ability to cause β2 adrenoceptor desensitization on ASMCs. RV-induced conditioned medium from HBECs depleted of PGE2 did not prevent ASMC β2 adrenoceptor desensitization; however this medium induced PGE2 from ASMCs, suggesting that autocrine prostaglandin production may be responsible. Using inhibitors of cyclooxygenase and prostaglandin receptor antagonists, we found that β2 adrenoceptor desensitization was mediated through ASMC derived COX-2 induced prostaglandins. Since ASMC prostaglandin production is unlikely to be caused by RV-induced epithelial derived proteins or lipids we next investigated activation of toll-like receptors (TLR) by viral RNA. The combination of TLR agonists poly I:C and imiquimod induced PGE2 and β2 adrenoceptor desensitization on ASMC as did the RNA extracted from RV-induced conditioned medium. Viral RNA but not epithelial RNA caused β2 adrenoceptor desensitization confirming that viral RNA and not endogenous human RNA was responsible. It was deduced that the mechanism by which β2 adrenoceptor desensitization occurs was by pattern recognition receptor activation of COX-2 induced prostaglandins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号