首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 118 毫秒
1.
The doubly positively charged gas-phase molecules BrO(2+) and NBr(2+) have been produced by prolonged high-current energetic oxygen (17 keV (16)O(-)) ion surface bombardment (ion beam sputtering) of rubidium bromide (RbBr) and of ammonium bromide (NH(4)Br) powdered ionic salt samples, respectively, pressed into indium foil. These novel species were observed at half-integer m∕z values in positive ion mass spectra for ion flight times of roughly ~12 μs through a magnetic-sector secondary ion mass spectrometer. Here we present these experimental results and combine them with a detailed theoretical investigation using high level ab initio calculations of the ground states of BrO(2+) and NBr(2+), and a manifold of excited electronic states. NBr(2+) and BrO(2+), in their ground states, are long-lived metastable gas-phase molecules with well depths of 2.73 × 10(4) cm(-1) (3.38 eV) and 1.62 × 10(4) cm(-1) (2.01 eV); their fragmentation channels into two monocations lie 2.31 × 10(3) cm(-1) (0.29 eV) and 2.14 × 10(4) cm(-1) (2.65 eV) below the ground state minimum. The calculated lifetimes for NBr(2+) (v(") < 35) and BrO(2+) (v(") < 18) are large enough to be considered stable against tunneling. For NBr(2+), we predicted R(e) = 3.051 a(0) and ω(e) = 984 cm(-1); for BrO(2+), we obtained 3.033 a(0) and 916 cm(-1), respectively. The adiabatic double ionization energies of BrO and NBr to form metastable BrO(2+) and NBr(2+) are calculated to be 30.73 and 29.08 eV, respectively. The effect of spin-orbit interactions on the low-lying (Λ + S) states is also discussed.  相似文献   

2.
3.
Laser temperature jump and shock tube techniques have been used to measure the monomer-dimer relaxation time in the gas phase. With the former method, the lifetime of the cyclic dimer of acetic acid is found to increase from 3 μs at 315 K to 16 μs at 285 K. The activation energy has been determined to be 11.4 ± 0.8 kcal mol?1. A step-wise mechanism of dissociation is discussed.  相似文献   

4.
The ion-clustering mechanism of the quenching of the metastable 2S-state of the muonic helium ion (μHe) 2S + in gaseous helium is studied on the basis of quantum-chemical calculations of clusters He n (μHe)+. It is shown that the quenching rates do not depend on the cluster ordern atn ≥ 2. In the helium gas at the pressure 0.1 ?p(atm) ? 10 the quenching of (μHe) 2S + proceeds, mainly, at the vibrationally excited levels of He(μHe) 2S + cluster, while atp ? 10 atm, at the ground vibrational state of the cluster He2(μHe) 2S + . Atp ≥0.1 atm the calculated quenching rates agree with the recent experimental data.  相似文献   

5.
The interactions between formamide, which can be considered a prototype of a peptide function, and Sr(2+) have been investigated by combining nanoelectrospray ionization/mass spectrometry techniques and G96LYP DFT calculations. For Sr an extended LANL2DZ basis set was employed, together with a 6-311+G(3df,2p) basis set expansion for the remaining atoms of the system. The observed reactivity seems to be dominated by the Coulomb explosion process yielding [SrOH](+) + [HNCH](+), which are the most intense peaks in the MS/MS spectra. Nevertheless, additional peaks corresponding to the loss of HNC and CO indicate that the association of Sr(2+) to water or to ammonia leads to long-lived doubly charged species detectable in the timescale of these experimental techniques. The topology of the calculated potential energy surface permits us to establish the mechanisms behind these processes. Although the interaction between the neutral base and Sr(2+) is essentially electrostatic, the polarization triggered by the doubly charged metal ion results in the activation of several bonds, and favors different proton transfer mechanisms required for the formation of the [SrOH](+), [SrOH(2)](2+) and [SrNH(3)](2+) products.  相似文献   

6.
Density functional theory calculations were performed to study the gas-phase reaction of Th(+) and Th(2+) with water. An in-depth analysis of the reaction pathways leading to different reaction products is presented. The obtained results are compared to experimental data and to the previously studied reactions of U cations with water.  相似文献   

7.
8.
9.
The structures and relative stabilities of the complexes formed by uracil and its sulfur derivatives, namely, 2-thio-, 4-thio, and 2,4-dithio-uracil when interacting with Ca(2+) in the gas phase have been analyzed by means of density functional theory (DFT) calculations carried out at the B3LYP/6-311++G(3df,2p)//B3LYP/6-31+G(d,p) level. For uracil and 2,4-dithiouracil, where the two basic sites are the same, Ca(2+) attachment to the heteroatom at position 4 is preferred. However, for the systems where both types of basic centers, a carbonyl or a thiocarbonyl group, are present, Ca(2+)-oxygen association is favored. The most stable complexes correspond to structures with Ca(2+) bridging between the heteroatom at position 2 of the 4-enol (or the 4-enethiol) tautomer and the dehydrogenated ring nitrogen, N3. The enhanced stability of these enolic forms is two-fold, on the one hand Ca(2+) interacts with two basic sites and on the other triggers a significant aromatization of the ring. Besides, Ca(2+) association has a clear catalytic effect on the tautomerization processes which connect the oxo-thione forms with the enol-enethiol tautomers. Hence, although the enol-enethiol tautomers of uracil and its thio derivatives should not be observed in the gas phase, the corresponding Ca(2+) complexes are the most stable species and should be accessible, because the tautomerization barriers are smaller than the Ca(2+) binding energies.  相似文献   

10.
We report the first gas-phase observation of the electronic spectrum of a simple halocarbocation, CH2I+. The ion was generated rotationally cold (Trot approximately 20 K) using pulsed discharge methods and was detected via laser spectroscopy. The identity of the spectral carrier was confirmed by modeling the rotational contour observed in the excitation spectra and by comparison of ground state vibrational frequencies determined by single vibronic level emission spectroscopy with Density Functional Theory (DFT) predictions. The transition was assigned as 3A1 <-- X1A1. This initial detection of the electronic spectrum of a halocarbocation in the gas phase should open new avenues for study of the structure and reactivity of these important ions.  相似文献   

11.
12.
The CS2O+ ion and CS2O molecule were prepared and structurally characterized by mass spectrometric techniques as isolated species in the gas phase. The theoretical analysis, performed by B3LYP and CCSD(T) computational methods, predicted different CS2O+ isomers, SSCO+, O(CS2)+, SCSO+, SCOS+ and S(COS)+, and structurally related singlet and triplet CS2O. Experiment and theory agree in identifying the obtained CS2O+ ions as a mixture of SCSO+ and SCOS+ isomers. CS2O neutral species, prepared by neutralization-reionization mass spectrometry, were directly characterized as intact, long-lived species with a lifetime tau > or =2 micros.  相似文献   

13.
Density functional theory calculations have been performed to explore the potential energy surfaces of C? O bond activation in CO2 molecule by gas‐phase Nb atom and Nb+ cation for better understanding the reaction mechanism of second‐row metal with CO2. The minimum‐energy reaction path is found to involve the spin inversion in the different reaction steps. This potential energy curve‐crossing dramatically affects the reaction energetic. The present results show that the mechanism is insertion‐elimination mechanism along the C? O bond activation reaction. All theoretical results not only support the existing conclusions inferred from early experiment but also complement the pathway and mechanism for this reaction. © 2010 Wiley Periodicals, Inc. Int J Quantum Chem, 2011  相似文献   

14.
The stability of gold iodides in the oxidation state +I and +III is investigated at the ab initio and density functional level using relativistic and nonrelativistic energy-adjusted pseudopotentials for gold and iodine. The calculations reveal that relativistic effects stabilize the higher oxidation state of gold as expected, that is Au2I6 is thermodynamically stable at the relativistic level, whilst at the nonrelativistic level the complex of two iodine molecules weakly bound to both gold atoms in Au2I2 is energetically preferred. The rather low stability of AuI3 with respect to dissociation into AuI and I2 will make it difficult to isolate this species in the solid state as (possibly) Au2I6 or detect it by matrix-isolation techniques. The monomer AuI3 is Jahn-Teller distorted from the ideal trigonal planar (D3h) form, but adopts a Y-shaped structure (in contrast to AuF3 and AuCl3), and in the nonrelativistic case can be described as I2 weakly bound to AuI. Relativistic effects turn AuI3 from a static Jahn-Teller system to a dynamic one. For the yet undetected gas-phase species AuI accurate coupled-cluster calculations for the potential energy curve are used to predict vibrational-rotational constants. Solid-state density functional calculations are performed for AuI and Au2I6 in order to predict cohesive energies.  相似文献   

15.
在CCSD(T)/B3LYP/6-311G(d,p)//B3LYP/6-311G(d,p)+ZPE水平上对反应HCNO+OH进行了计算,建立了反应势能面,对反应中涉及到的6个中间体和12个过渡态都做了详尽的分析.详细阐明了理论上可能得到的7种产物:P1为H2O+CNO,P2为HCO+HNO,P3为HO2+HCN,P4为HONH+CO,P5为H2CO+NO,P6为H2NO+CO和P7为H2O+OCN,以及形成这些产物的各种反应通道.其中最主要通道为由反应物形成反式初始复合物,再连续经过2次1,3-氢迁移最终形成产物HONH+CO,该通道是一条热力学可行的反应通道.并且从反应物、中间体和产物的相对能量来看,此反应是典型的消除型反应.另外,直接的氢提取反应也是比较重要的反应通道.  相似文献   

16.
On the effect of Ca2+ and La3+ on the colloidal stability of liposomes   总被引:1,自引:0,他引:1  
This work deals with the effect of Ca2+ and La3+ on the colloidal stability of phosphatidylcholine (PC) liposomes in aqueous media. As physical techniques, nephelometry, photon correlation spectroscopy, electrophoretic mobility, and surface tension were used. The theoretical predictions of the colloidal stability of liposomes were followed using the Derjaguin-Landau-Verwey-Overbeek theory. Changes in the size of liposomes and high polydispersity values were observed as La3+ concentration increases, suggesting that this cation induces the aggregation of liposomes. However, changes in polydispersity were not observed with Ca2+, suggesting a coalescence mechanism or fusion of liposomes. The stability factor (W), calculated from the nephelometry measurements indicated that aggregation/fusion occurs at a critical concentration (c.c.) of 0.3 and 0.7 M for La3+ and Ca2+, respectively. To gain a better insight into the interaction mechanism between the liposomes and the studied ions, the interaction between PC monolayers and Ca2+ and La3+ was studied. Changes in the surface area per lipid molecule (A0) in the monolayer at the c.c. values were found for both ions, with a more pronounced effect in the case of Ca2+. This corresponds with a larger reduction of the steric repulsive interaction between the headgroups at the phospholipid membrane (pi(head)). The experimental result validates the hypothesis made on the liposome fusion in the presence of Ca2+ and liposome aggregation in the presence of La3+. These aggregation mechanisms have also been confirmed by transmission electron microscopy.  相似文献   

17.
Possible molecular mechanisms of the gas-phase ion/molecule reaction of VO2+ in its lowest singlet and triplet states (1A1/3A' ') with propyne have been investigated theoretically by density functional theory (DFT) methods. The geometries, energetic values, and bonding features of all stationary and intersystem crossing points involved in the five different reaction pathways (paths 1-5), in both high-spin (triplet) and low-spin (singlet) surfaces, are reported and analyzed. The oxidation reaction starts by a hydrogen transfer from propyne molecule to the vanadyl complex, followed by oxygen migration to the hydrocarbon moiety. A hydride transfer process to the vanadium atom opens four different reaction courses, paths 1-4, while path 5 arises from a hydrogen transfer process to the hydroxyl group. Five crossing points between high- and low-spin states are found: one of them takes place before the first branching point, while the others occur along path 1. Four different exit channels are found: elimination of hydrogen molecule to yield propynaldehyde and VO+ (1Sigma/3Sigma); formation of propynaldehyde and the moiety V-(OH2)+; and two elimination processes of water molecule to yield cationic products, Prod-fc+ and Prod-dc+ where the vanadium atom adopts a four- and di-coordinate structure, respectively.  相似文献   

18.
The relative stability of RNA duplexes were determined in both solution and gas phase. Solution stability as determined by a spectrophotometric method indicated that the Watson-Crick duplexes were more stable than duplexes containing one GA mismatch or two tandem GA mismatches. Gas phase stability was determined using ESI-MS through variation of the collision energy in an ion trap. Stability curves similar to the melting curves obtained in solution were observed. The relative stability in gas phase differed, however, from that in solution. The duplexes with two tandem GA mismatches were found to be more stable than the Watson-Crick and single GA mismatch duplexes. The different trends observed in solution versus gas phase can be attributed to the primary means of interaction. In solution, stacking is expected to be the dominant interaction mode. In the gas phase, hydrogen bonding is expected to be the dominant interaction mode. Duplexes with tandem GA mismatches have the potential to undergo additional hydrogen bonding relative to the other duplexes which could account for their increased stability in the gas phase.  相似文献   

19.
The gas-phase reactions between Ca(2+) and selenourea were investigated by means of electrospray/tandem mass spectrometry techniques. The MS/MS spectra of [Ca(selenourea)](2+) complexes show intense peaks at m/z 43, 121, 124, and 146 and assigned to monocations produced in different coulomb explosion processes. The structures and bonding characteristics of the stationary points of the [Ca(selenourea)](2+) potential energy surface (PES) were theoretically studied by DFT calculations carried out at the B3LYP/6-311+G(3df,2p)//B3LYP/6-311+G(d,p) level. The analysis of the topology of this PES allows identification of H(2)NCNH(+), CaSeH(+), selenourea(+). and CaNCSe(+) ion peaks at m/z 43, 121, 124, and 146, respectively. The reactivity of selenourea and the topology of the corresponding potential energy surface mimic that of thiourea. However, significant dissimilarities are found with respect to urea. The dissociative electron-transfer processes, not observed for urea, is one of the dominant fragmentations for selenourea, reflecting its much lower ionization energy. Similarly, the coulomb explosions yielding CaXH(+) + H(2)NCNH(+) (X = O or Se), which for urea are not observed, are very favorable for selenourea. Finally, while in urea the loss of NH(3) competes with the formation of NH(4+), for selenourea the latter process is clearly dominant.  相似文献   

20.
It is shown that the mechanism of spontaneous infrared emission enhances substantially the stability of the long-lived ground electronic state of the exotic BeH2+, whose autodissociation becomes possible only via tunneling. The system, initially situated in any vibrational level (except the high-lying ones for which dissociation is predominate) and statistically distributed over all rotational states, reaches stability through a cascade of dipole emissions toward lower levels. The rapid spatial variation of the dipole moment results in fast radiative processes and might suggest experimental observations easier to perform. The methodology is based on a recently presented analytic discrete variable representation (DVR ) [D.T. Colbert and W.H. Miller, J. Chem. Phys. 96 , 1982 (1992)] that facilitates calculations. This might prove particularly useful to spectroscopists, allowing a check of the quality of potentials produced by inversion methods or the reliable calculation of spectrochemical quantities. © 1995 John Wiley & Sons, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号