首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The deep feedback Group Method of Data Handling (GMDH)-type neural network is applied to the medical image recognition of kidney regions. In this algorithm, the principal component-regression analysis is used for the learning calculation of the neural network, and the accurate and stable predicted values are obtained. The neural network architecture is automatically organized so as to fit the complexity of the medical images using the prediction error criterion defined as Akaike’s Information Criterion (AIC) or Prediction Sum of Squares (PSS). The recognition results show that the deep feedback GMDH-type neural network algorithm is useful for the medical image recognition of kidney regions, because the optimum neural network architecture is automatically organized.  相似文献   

2.
A revised group method of data handling (GMDH)-type neural network algorithm using knowledge base for medical image diagnosis, is proposed and applied to medical image diagnosis of liver cancer. In this algorithm, the knowledge base for medical image diagnosis is used for organizing the neural network architecture for medical image diagnosis. Furthermore, the revised GMDH-type neural network algorithm has a feedback loop and can identify the characteristics of the medical images accurately using feedback loop calculations. It is shown that the revised GMDH-type neural network is accurate and a useful method for the medical image diagnosis of the liver cancer.  相似文献   

3.
4.
In this study, a revised Group Method of Data Handling (GMDH)-type neural network self-selecting functions is applied to the computer aided image diagnosis (CAD) of lung cancer. The GMDH-type neural network algorithm has an ability of self-selecting optimum neural network architecture from three neural network architectures, such as sigmoid function neural network, radial basis function neural network and polynomial neural network. The GMDH-type neural network also has abilities of self-selecting the number of layers, the number of neurons in hidden layers and useful input variables. This algorithm is applied to CAD of lung cancers, and it is shown that this algorithm is useful for the CAD, and is very easy to apply to practical complex problems because optimum neural network architecture is automatically organized.  相似文献   

5.
A revised group method of data handling (GMDH)-type neural network algorithm using various kinds of neuron is applied to the medical image diagnosis of lung cancer. The optimum neural network architecture for medical image diagnosis is automatically organized using a revised GMDH-type neural network algorithm, and the regions of lung cancer are recognized and extracted accurately. In this revised GMDH-type neural network algorithm, polynomial-type and radial basis function (RBF)-type neurons are used for organizing the neural network architecture in order to fit the complexity of the nonlinear system.  相似文献   

6.
In this study, a deep multi-layered group method of data handling (GMDH)-type neural network is applied to the medical image analysis of the abdominal X-ray computed tomography (CT) images. The deep neural network architecture which has many hidden layers are automatically organized using the deep multi-layered GMDH-type neural network algorithm so as to minimize the prediction error criterion defined as Akaike’s information criterion (AIC) or prediction sum of squares (PSS). The characteristics of the medical images are very complex and therefore the deep neural network architecture is very useful for the medical image diagnosis and medical image recognition. In this study, it is shown that this deep multi-layered GMDH-type neural network is useful for the medical image analysis of abdominal X-ray CT images.  相似文献   

7.
In this study, the deep multi-layered group method of data handling (GMDH)-type neural network algorithm using revised heuristic self-organization method is proposed and applied to medical image diagnosis of liver cancer. The deep GMDH-type neural network can automatically organize the deep neural network architecture which has many hidden layers. The structural parameters such as the number of hidden layers, the number of neurons in hidden layers and useful input variables are automatically selected to minimize prediction error criterion defined as Akaike’s information criterion (AIC) or prediction sum of squares (PSS). The architecture of the deep neural network is automatically organized using the revised heuristic self-organization method which is a type of the evolutionary computation. This new neural network algorithm is applied to the medical image diagnosis of the liver cancer and the recognition results are compared with the conventional 3-layered sigmoid function neural network.  相似文献   

8.
A revised group method of data handling (GMDH)-type neural network algorithm for medical image recognition is proposed, and is applied to medical image analysis of cancer of the liver. The revised GMDH-type neural network algorithm has a feedback loop and can identify the characteristics of the medical images accurately using feedback-loop calculations. In this algorithm, the polynomial type and the radial basis function (RBF)-type neurons are used for organizing the neural network architecture. The optimum neural network architecture fitting the complexity of the medical images is automatically organized so as to minimize the prediction error criterion, defined as the prediction sum of squares (PSS).  相似文献   

9.
The deep feedback group method of data handling (GMDH)-type neural network is applied to the medical image analysis of MRI brain images. In this algorithm, the complexity of the neural network is increased gradually using the feedback loop calculations. The deep neural network architecture is automatically organized so as to fit the complexity of the medical images using the prediction error criterion defined as Akaike’s information criterion (AIC) or prediction sum of squares (PSS). The recognition results show that the deep feedback GMDH-type neural network algorithm is useful for the medical image analysis of MRI brain images, because the optimum neural network architectures fitting the complexity of the medical images are automatically organized so as to minimize the prediction error criterion defined as AIC or PSS.  相似文献   

10.
In this study, a revised group method of data handling (GMDH)-type neural network algorithm which self-selects the optimum neural network architecture is applied to 3-dimensional medical image analysis of the heart. The GMDH-type neural network can automatically organize the neural network architecture by using the heuristic self-organization method, which is the basic theory of the GMDH algorism. The heuristic self-organization method is a kind of evolutionary computation method. In this revised GMDH-type neural network algorithm, the optimum neural network architecture was automatically organized using the polynomial and sigmoid function neurons. Furthermore, the structural parameters, such as the number of layers, the number of neurons in the hidden layers, and the useful input variables, are selected automatically in order to minimize the prediction error criterion, defined as the prediction sum of squares (PSS).  相似文献   

11.
This paper presents a personal identification system using finger-vein patterns with component analysis and neural network technology. In the proposed system, the finger-vein patterns are captured by a device that can transmit near infrared through the finger and record the patterns for signal analysis. The proposed biometric system for verification consists of a combination of feature extraction using principal component analysis (PCA) and pattern classification using back-propagation (BP) network and adaptive neuro-fuzzy inference system (ANFIS). Finger-vein features are first extracted by PCA method to reduce the computational burden and removes noise residing in the discarded dimensions. The features are then used in pattern classification and identification. To verify the effect of the proposed ANFIS in the pattern classification, the BP network is compared with the proposed system. The experimental results indicated the proposed system using ANFIS has better performance than the BP network for personal identification using the finger-vein patterns.  相似文献   

12.
13.
Segmentation of ultrasound images by using a hybrid neural network   总被引:3,自引:0,他引:3  
A hybrid neural network is presented for the segmentation of ultrasound images.

Feature vectors are formed by the discrete cosine transform of pixel intensities in region of interest (ROI). The elements and the dimension of the feature vectors are determined by considering only two parameters: The amount of ignored coefficients, and the dimension of the ROI.

First-layer-nodes of the proposed hybrid network represent hyperspheres (HSs) in the feature space. Feature space is partitioned by intersecting these HSs to represent the distribution of classes. The locations and radii of the HSs are found by the genetic algorithms.

Restricted Coulomb energy (RCE) network, modified RCE network, multi-layer perceptron and the proposed hybrid neural network are examined comparatively for the segmentation of ultrasound images.  相似文献   


14.
周涛  蒋芸  王勇  张国荣  王明芳  明利特 《计算机应用》2010,30(10):2857-2860
为了提高乳腺癌早期诊断的准确率,将小波理论与神经网络理论相结合提出改进的小波神经网络算法。将经过预处理的医学图像提取特征值,然后利用基于改进的小波神经网络算法的分类器对医学图像进行分类。通过实验表明此分类器具有较高的分类精度,是有效和可行的;与单独使用后向传播神经网络算法相比分类效果也得到了改善。  相似文献   

15.
The application of cellular neural network (CNN) has made great progress in image processing. When the selected objects extraction (SOE) CNN is applied to gray scale images, its effects depend on the choice of initial points. In this paper, we take medical images as an example to analyze this limitation. Then an improved algorithm is proposed in which we can segment any gray level objects regardless of the limitation stated above. We also use the gradient information and contour detection CNN to determine the contour and ensure the veracity of segmentation effectively. Finally, we apply the improved algorithm to tumor segmentation of the human brain MR image. The experimental results show that the algorithm is practical and effective.  相似文献   

16.
A novel method based on topology-preserving neural networks is used to implement vector quantization for medical image compression. The described method is an innovative image compression procedure, which differentiates itself from known systems in several ways. It can be applied to larger image blocks and represents better probability distribution estimation methods. A transformation-based operation is applied as part of the encoder on the block-decomposed image. The quantization process is performed by a “neural-gas” network which applied to vector quantization converges quickly to low distortion errors and reaches a distortion error lower than that resulting from Kohonen's feature map or the LBG algorithm. To study the efficiency of our algorithm, we blended mathematical phantom features into clinically proved cancer free mammograms. The influence of the neural compression method on the phantom features and the mammo-graphic image is not visually perceptible up to a high compression rate.  相似文献   

17.
Adaptive image interpolation using probabilistic neural network   总被引:1,自引:0,他引:1  
This paper proposes an image interpolation model based on probabilistic neural network (PNN). The method adjusts automatically the smoothing parameters for varied smooth/edge image region, and takes into consideration both smoothness (flat region) and sharpness (edge region) characteristics at the same model. A single neuron, combined with PSO training, is used for sharpness/smoothness adaptation. Finally, we report the performance of these newly proposed methods in other image interpolation method.  相似文献   

18.
Due to various seasonal and monthly changes in electricity consumption and difficulties in modeling it with the conventional methods, a novel algorithm is proposed in this paper. This study presents an approach that uses Artificial Neural Network (ANN), Principal Component Analysis (PCA), Data Envelopment Analysis (DEA) and ANOVA methods to estimate and predict electricity demand for seasonal and monthly changes in electricity consumption. Pre-processing and post-processing techniques in the data mining field are used in the present study. We analyze the impact of the data pre-processing and post-processing on the ANN performance and a 680 ANN-MLP is constructed for this purpose. DEA is used to compare the constructed ANN models as well as ANN learning algorithm performance. The average, minimum, maximum and standard deviation of mean absolute percentage error (MAPE) of each constructed ANN are used as the DEA inputs. The DEA helps the user to use an appropriate ANN model as an acceptable forecasting tool. In the other words, various error calculation methods are used to find a robust ANN learning algorithm. Moreover, PCA is used as an input selection method, and a preferred time series model is chosen from the linear (ARIMA) and nonlinear models. After selecting the preferred ARIMA model, the Mcleod–Li test is applied to determine the nonlinearity condition. Once the nonlinearity condition is satisfied, the preferred nonlinear model is selected and compared with the preferred ARIMA model, and the best time series model is selected. Then, a new algorithm is developed for the time series estimation; in each case an ANN or conventional time series model is selected for the estimation and prediction. To show the applicability and superiority of the proposed ANN-PCA-DEA-ANOVA algorithm, the data regarding the Iranian electricity consumption from April 1992 to February 2004 are used. The results show that the proposed algorithm provides an accurate solution for the problem of estimating electricity consumption.  相似文献   

19.
Cosatto  E. Craf  H.P. 《Micro, IEEE》1995,15(3):32-38
At the heart of this image analysis system are two NET32K analog neural network chips, computing over 100 billion multiply-accumulates per second. The system simultaneously scans sixty-four 16×16-pixel templates over bi-level images, producing feature maps that mark matches between the image and the templates. When we code simple, generic shapes into the templates, the feature maps allow us to make quick, robust analyses of complex, noisy images  相似文献   

20.
为克服BP算法易陷入局部最小的缺点,同时为减少样本数据维数,提出一种基于主成分分析(PCA)的遗传神经网络方法。通过降维和去相关加快收敛速度,采用改进的遗传算法优化神经网络权值,利用自适应学习速率动量梯度下降算法对神经网络进行训练。MATLAB仿真实验结果表明,该方法在准确性和收敛性方面都优于BP算法,应用于入侵检测系统中的检测率和误报率明显优于传统方法。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号