首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到12条相似文献,搜索用时 0 毫秒
1.
Oxygen Demand by a Sediment Bed of Finite Length   总被引:1,自引:0,他引:1  
A model of sedimentary oxygen demand (SOD) for a sediment bed of finite length is presented. The responses of diffusive oxygen transfer in turbulent flow above the sediment surface and of microbial activity inside the sediment to a developing diffusive boundary layer are modeled numerically. The developing diffusive boundary layer above the sediment/water interface is modeled based on shear velocity and turbulent boundary layer concepts, and dissolved oxygen (DO) uptake inside the sediment is modeled as a function of the microbial growth rate. The model predicts that the diffusive boundary layer above the sediment/water interface thickens in flow direction, and that DO penetration depth into the sediment is practically constant over the length of the sediment bed. The effect of the developing diffusive boundary layer on SOD is minor, except at very low shear/flow velocities (shear velocity U*<0.01?cm/s) and/or high microbial density inside the sediment. The average SOD over the sediment bed therefore varies only slightly with its length. SOD varies somewhat in flow direction, i.e., SOD is largest near the leading edge (x = 0), decreases with distance, and finally, approaches a nearly constant value for fully developed boundary layer. Including microbial activity in the sediment makes the change of SOD in flow direction much smaller than is predicted by a pure vertical diffusive flux model. The diffusive boundary layer is nearly fully developed at a dimensionless distance x+ = 10,000, regardless of microbial activity inside the sediment. Longer sediment beds are required to eliminate the small leading edge effect on any measured average SOD value. SOD depends strongly on the diffusion coefficient of DO inside the sediment bed. This effect becomes more significant as shear/flow velocity is increased. Overall, SOD is found to be controlled principally by shear velocity of the water flowing above the sediment/water interface, microbial activity inside the sediment, and diffusion of DO inside the sediment. The length of the sediment bed is of lesser influence.  相似文献   

2.
Time-variable (periodic) flow over a lake bed, and the associated boundary layer development, have the potential to control or at least influence rates of mass transfer across the sediment/water interface. An analysis for instantaneous and time averaged flux of a material across the sediment/water interface for infinite supply in the water and infinite sink in the sediment is presented. The water flow above the interface is characterized by the shear velocity (U?) which is a periodic function of time with a maximum amplitude of (U?0) as may be typical of an internal seiche (internal standing wave) motion in a density stratified lake. The relationship between the shear velocity on the lake bed and the wind shear on the lake surface is illustrated for an extremely simplified two-layered lake of constant depth. For a less restrictive analysis, shear velocities on a lake bed have to be obtained either from field measurements or from a three-dimensional lake circulation model driven by atmospheric forcing including wind. Smaller and wind-sheltered lakes will have lower (U?0) and periodicities (T). The response of the diffusive boundary layer was related to the period of the periodic motion (T), Schmidt number (Sc), and shear velocity (U?). The vertical diffusive flux at the sediment/water interface was expressed by a Sherwood number (Sh), either instantaneous or time averaged. The mean Sherwood number (Shave) varies with shear velocity of the wave motion over the sediment bed, Schmidt number (Sc) and the period (T) due to the response of the diffusive boundary layer to the time variable water velocity. Effective diffusive boundary layers develop only at low shear velocities. Where they do, maximum and minimum boundary layer thickness depends on all three independent variables (T, Sc, and U?0). The diffusive boundary layer strongly affects sediment/water mass transfer, i.e., Sherwood numbers. Mass transfer averaged over a period can be substantially less than that produced by steady-state flow at the same U?0 and Sc. At Sc = 500, typical for dissolved oxygen, the mass transfer ratio can be reduced to 60% of steady state, depending on the internal wave period (T).  相似文献   

3.
Variable pressure at the sediment/water interface due to surface water waves can drive advective flows into or out of the lake bed, thereby enhancing solute transfer between lake water and pore water in the lake bed. To quantify this advective transfer, the two-dimensional (2D) advection-dispersion equation in a lake bed has been solved with spatially and temporally variable pressure at the bed surface. This problem scales with two dimensionless parameters: a “dimensionless wave speed” (W) and a “relative dispersivity” (λ). Solutions of the 2D problem were used to determine a depth-dependent “vertically enhanced dispersion coefficient” (DE) that can be used in a 1D pore-water quality model which in turn can be easily coupled with a lake water quality model. Results of this study include a relationship between DE and the depth below the bed surface for W>50 and λ ? 0.1. The computational results are compared and validated against a set of laboratory measurements. An application shows that surface waves may increase the sediment oxygen uptake rate in a lake by two orders of magnitude.  相似文献   

4.
Bench-scale reactor experiments were performed to study the dissolution of a binary naphthalene-in-nonane mixture nonaqueous phase liquid (NAPL) pool over a wide range of average pore water velocities, vx (≈0.1–60 m/day). Experimental NAPL pool dissolution flux values were determined using a steady-state mass balance approach. The experimental flux data were compared to model predictions made assuming either local equilibrium or mass-transfer limited conditions. The local equilibrium model could describe the trends in the average effluent concentration and dissolution flux with 0.110?m/day. Data determined to be under mass-transfer limited conditions were fit to the nonequilibrium model to estimate values for an overall mass-transfer coefficient. The calculated overall mass-transfer coefficients had an average value of 0.407 m/day and showed no correlation with vx, probably due to mass-transfer resistance becoming dominated by the diffusional resistance in the NAPL. These results suggest that the nonequilibrium approach is better suited for describing high velocity (vx>10?m/day) dissolution of multicomponent NAPL pools, and that flushing of groundwater at very high velocities may not be an effective approach for enhancing NAPL-pool dissolution flux.  相似文献   

5.
Buoyant Surface Discharges into Water Bodies. II: Jet Integral Model   总被引:1,自引:0,他引:1  
The near-field region of a buoyant surface discharge into water bodies often displays significant jet-like motions in form of free jets, shoreline-attached jets, and wall jets, respectively, as classified by the CORMIX3 expert system [see Jones et al., (2007, Paper I)]. A new jet integral model CorSurf has been developed that addresses in a single formulation this entire spectrum of jet motions in both deep or shallow environments. The model employs an entrainment closure approach for the separate contributions of entrainment resulting from transverse shear, buoyant damping, advected puff motions, frontal mixing, and interfacial mixing due to lateral spreading. It also contains a quadratic law turbulent drag force mechanism. An alternative model formulation applies to the two-dimensional bottom-attached form of the jet. This formulation contains a deflecting pressure force mechanism as well as the bottom shear force. Specific criteria describe bottom attachment and detachment processes. Finally, a number of confinement effects on the jet dynamics due to shallow water and/or lateral boundaries are included. The model has been validated under a wide range of geometric and dynamic conditions using, in particular, hitherto unavailable high-resolution laboratory data.  相似文献   

6.
A small storm-water retention pond is primarily designed to reduce the peak rate of surface runoff. From a water quality standpoint, that same pond may be irregular in shape and trap suspended sediment carried by the surface runoff generated upstream of the site. Considering different pond inlet locations, the writer’s numerical model is used to investigate the change in peak concentration of sediment discharge at the pond outlet. It has been found that the various hydraulic conditions can have a significant impact on sediment discharge. Three different cases are presented to show the flexibility of modeling changes in boundary conditions. The results may help designers evaluate sediment discharge to determine the most effective pond inlet locations.  相似文献   

7.
An attempt was made to couple the water quality model of Danshuei River to the three-dimensional unstructured-grid hydrodynamic model [Eulerian–Lagrangian circulation model (ELCIRC)]. The Eulerian–Lagrangian scheme for the solution of the transport equations of salt in ELCIRC was demonstrated to be not mass conservative. The scheme was replaced with a finite-volume/finite-difference upwind scheme to ensure mass conservation both locally and globally. The same scheme was also used for the scalar transport equation in the water quality model. The representation of mass flux in the scalar transport equation is carefully formulated to be consistent with that of volume flux used in the continuity equations of ELCIRC. It was demonstrated that the newly revised scheme (1) conserved mass locally and globally; (2) conserved mass for both conservative and nonconservative substances subjected to biogeochemical transformation; and (3) preserved the integrity of the wetting-and-drying scheme. Further, the baroclinic simulation using the newly revised scheme showed a better result in terms of salt intrusion and salinity distribution in the Danshuei River estuary.  相似文献   

8.
The major water quality impairment in the midwest United States is sediment eroded from agricultural lands. Yet, few understand the spatial and temporal variability of erosion, or soil erosion dynamics, in relation to precipitation, topography, land management, and severe events. The objectives of this paper are to (1) develop a methodology for estimating long-term spatial soil erosion and water runoff losses and (2) explore issues in applying an established physical-based process model, Water Erosion Prediction Project (WEPP), to a large area by establishing a prototype system for the state of Iowa. This study for the first time provides a comparison of the model predictions against long-term measurements of the sediment delivery ratio (SDR) in the South Amana Catchment of the Clear Creek Watershed (CCW), a heavily instrumented watershed that is roughly 10 times the maximum WEPP fold size. To further examine the performance of WEPP in a semihumid environment, such as the CCW, where runoff and raindrop impact to erosion may be significant, the SDR was plotted as a function of the runoff coefficient, defined as the runoff/rainfall ratio. In addition, the WEPP predictions are compared against the statistical relation of SDR vs. runoff coefficient developed by Piest et al. in 1975) for watersheds in Iowa. It is shown that WEPP follows the trend shown by Piest et al. quite closely and performs well for continuous simulations extended up to 300?years.  相似文献   

9.
Sediment oxygen demand (SOD) and nutrient flux studies were conducted for a tropical reservoir in Singapore in order to determine the approximate SOD and nutrient release rates from the sediments. SOD values obtained from laboratory experiments ranged from 1.4 to 3.3?g?O2/m2-day. Similar results were also obtained by calculating SOD values from in situ DO measurements taken in the field. The nutrient flux study was performed in the laboratory at a constant temperature of 25°C in oxic and anoxic columns. Except for nitrate+nitrite, higher nutrient release rates were generally observed under anoxic conditions. The ammonium release rate was 0.06?g?O2/m2-day under oxic conditions and 0.117?g?O2/m2-day under anoxic conditions. The nitrate flux rate was 0.17?g?O2/m2-day under oxic conditions but was negligible under anoxic conditions. Orthophosphate flux results were negative throughout the oxic incubation implying that sediments acted as a sink. The release rate of orthophosphate was 0.007?6?g?O2/m2-day under anoxic conditions.  相似文献   

10.
A mechanistic oxygen transfer model was developed and applied to a flow-through hollow-fiber membrane-aerated biofilm reactor. Model results are compared to conventional clean water test results as well as performance data obtained when an actively nitrifying biofilm was present on the fibers. With the biofilm present, oxygen transfer efficiencies between 30 and 55% were calculated from the measured data including the outlet gas oxygen concentration, ammonia consumption stoichiometry, and oxidized nitrogen production stoichiometry, all of which were in reasonable agreement. The mechanistic model overpredicted the oxygen transfer by a factor of 1.3 relative to the result calculated from the outlet gas oxygen concentration, which was considered the most accurate of the measured benchmarks. A mass transfer coefficient derived from the clean water testing with oxygen sensors at the membrane-liquid interface was the most accurate of the predictive models (overpredicted by a factor of 1.1) while a coefficient determined by measuring bulk liquid dissolved oxygen underpredicted the oxygen transfer by a factor of 3. The mechanistic model was found to be an adequate tool for design because it used the published diffusion and partition coefficients rather than requiring small-scale testing to determine the system-specific mass transfer coefficients.  相似文献   

11.
Effective simulation of the fate and transport of runoff event inflows is an important goal of many water quality modeling initiatives. The set-up and testing of a two-dimensional hydrodynamic transport model is documented for a water supply reservoir, Schoharie Reservoir, New York, that uses specific conductance (SC) as a conservative tracer and focuses on fate and transport of runoff event inputs, particularly the plunging of density currents in summer and fall. Model testing is supported by temporally detailed measurements of meteorological, operational, and tributary (temperature and SC) model drivers, and temporally and spatially replete in-reservoir patterns of SC following multiple runoff events, obtained with a combination of robotic monitoring platforms and gridding with rapid profiling instrumentation. Specific conductance is demonstrated to be an ideal tracer because of the distinct tributary signals and subsequent in-reservoir signatures imparted from runoff events and its close coupling to turbidity patterns that are primary water quality concerns for managers. The model is demonstrated to perform well in simulating in-reservoir signatures of SC following multiple runoff events over the spring to fall interval of 2003, including vertical, longitudinal, and temporal patterns, and features of the thermal stratification regime for the same interval. The validated model is applied in a probabilistic manner on the basis of a 61-year record (239 runoff events) of model drivers to provide a robust representation of the transport of runoff event inputs relative to the location of the water supply intake. This application demonstrates the entry of runoff event inflows as plunging density currents in summer and fall is a recurring phenomenon for this reservoir.  相似文献   

12.
In this study, a copolymer, cyclodextrin/epichlorohydrin was synthesized and used as an adsorbent to remove two taste and odor causing compounds, namely, MIB and geosmin from the Lake Michigan water. The removal efficiency of these compounds using the copolymer on average was 74.5% for MIB and 77.5% for geosmin as compared to the removal efficiency using powdered activated carbon that resulted in 52.9% and 67% removal, respectively, for the same compounds. The removal efficiencies were examined for an initial concentration range of 20 to 120?μg/L for both MIB and geosmin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号