首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
Nonvolatile resistive random‐access memory devices based on graphene‐oxide‐wrapped gold nanospheres (AuNS@GO) are fabricated following a one‐step room‐temperature solution‐process approach reported herein for the first time. The effect of the thickness of the GO layer (2, 5, and 7 nm) and the size of the synthesized AuNS (15 and 55 nm) are inspected. Reliable bistable switching is observed in the devices made from a flexible substrate and incorporating 5 and 7 nm thick GO‐wrapped AuNS, sandwiched between two metal electrodes. Current–voltage measurements show bipolar switching behavior with an ON/OFF ratio of 103 and relatively low operating voltage (?2.5 V). The aforementioned devices unveil remarkable robustness over 100 endurance cycles and a retention of 103 s. Conversely, a 2 nm thick GO layer is shown to be insufficient to allow current passage from the bottom to the top electrodes. The resistive switching mechanism is demonstrated by space charge trapped limited current due to the AuNS in AuNS@GO matrix. The proposed device and methodology herein applied are expected to be attractive candidates for future generation flexible memory devices.  相似文献   

2.
This work reports a resistive switching effect observed at rectifying Pt/Bi1–δFeO3 interfaces and the impact of Bi deficiencies on its characteristics. Since Bi deficiencies provide hole carriers in BiFeO3, Bi‐deficient Bi1–δFeO3 films act as a p‐type semiconductor. As the Bi deficiency increased, a leakage current at Pt/Bi1–δFeO3 interfaces tended to increase, and finally, rectifying and hysteretic current–voltage (IV) characteristics were observed. In IV characteristics measured at a voltage‐sweep frequency of 1 kHz, positive and negative current peaks originating from ferroelectric displacement current were observed under forward and reverse bias prior to set and reset switching processes, respectively, suggesting that polarization reversal is involved in the resistive switching effect. The resistive switching measurements in a pulse‐voltage mode revealed that the switching speed and switching ratio can be improved by controlling the Bi deficiency. The resistive switching devices showed endurance of >105 cycles and data retention of >105 s at room temperature. Moreover, unlike conventional resistive switching devices made of metal oxides, no forming process is needed to obtain a stable resistive switching effect in the ferroelectric resistive switching devices. These results demonstrate promising prospects for application of the ferroelectric resistive switching effect at Pt/Bi1–δFeO3 interfaces to nonvolatile memory.  相似文献   

3.
Crossbar‐type bipolar resistive memory devices based on low‐temperature amorphous TiO2 (a‐TiO2) thin films are very promising devices for flexible nonvolatile memory applications. However, stable bipolar resistive switching from amorphous TiO2 thin films has only been achieved for Al metal electrodes that can have severe problems like electromigration and breakdown in real applications and can be a limiting factor for novel applications like transparent electronics. Here, amorphous TiO2‐based resistive random access memory devices are presented that universally work for any configuration of metal electrodes via engineering the top and bottom interface domains. Both by inserting an ultrathin metal layer in the top interface region and by incorporating a thin blocking layer in the bottom interface, more enhanced resistance switching and superior endurance performance can be realized. Using high‐resolution transmission electron microscopy, point energy dispersive spectroscopy, and energy‐filtering transmission electron microscopy, it is demonstrated that the stable bipolar resistive switching in metal/a‐TiO2/metal RRAM devices is attributed to both interface domains: the top interface domain with mobile oxygen ions and the bottom interface domain for its protection against an electrical breakdown.  相似文献   

4.
A flexible and transparent resistive switching memory based on a natural organic polymer for future flexible electronics is reported. The device has a coplanar structure of Mg/Ag‐doped chitosan/Mg on plastic substrate, which shows promising nonvolatile memory characteristics for flexible memory applications. It can be easily fabricated using solution processes on flexible substrates at room temperature and indicates reliable memory operations. The elucidated origin of the bipolar resistive switching behavior is attributed to trap‐related space‐charge‐limited conduction in high resistance state and filamentary conduction in low resistance state. The fabricated devices exhibit memory characteristics such as low power operation and long data retention. The proposed biocompatible memory device with transient electrodes is based on naturally abundant materials and is a promising candidate for low‐cost memory applications. Devices with natural substrates such as chitosan and rice paper are also fabricated for fully biodegradable resistive switching memory. This work provides an important step toward developing a flexible resistive switching memory with natural polymer films for application in flexible and biodegradable nanoelectronic devices.  相似文献   

5.
An all‐oxide transparent resistive random access memory (T‐RRAM) device based on hafnium oxide (HfOx) storage layer and indium‐tin oxide (ITO) electrodes is fabricated in this work. The memory device demonstrates not only good optical transmittance but also a forming‐free bipolar resistive switching behavior with room‐temperature ROFF/RON ratio of 45, excellent endurance of ≈5 × 107 cycles and long retention time over 106 s. More importantly, the HfOx based RRAM carries great ability of anti‐thermal shock over a wide temperature range of 10 K to 490 K, and the high ROFF/RON ratio of ≈40 can be well maintained under extreme working conditions. The field‐induced electrochemical formation and rupture of the robust metal‐rich conductive filaments in the mixed‐structure hafnium oxide film are found to be responsible for the excellent resistance switching of the T‐RRAM devices. The present all‐oxide devices are of great potential for future thermally stable transparent electronic applications.  相似文献   

6.
Developing a means by which to compete with commonly used Si‐based memory devices represents an important challenge for the realization of future three‐dimensionally stacked crossbar‐array memory devices with multifunctionality. Therefore, oxide‐based resistance switching memory (ReRAM), with its associated phenomena of oxygen ion drifts under a bias, is becoming increasingly important for use in nanoscalable crossbar arrays with an ideal memory cell size due to its simple metal–insulator–metal structure and low switching current of 10–100 μA. However, in a crossbar array geometry, one single memory element defined by the cross‐point of word and bit lines is highly susceptible to unintended leakage current due to parasitic paths around neighboring cells when no selective devices such as diodes or transistors are used. Therefore, the effective complementary resistive switching (CRS) features in all Ti‐oxide‐based triple layered homo Pt/TiOx/TiOy/TiOx/Pt and hetero Pt/TiOx/TiON/TiOx/Pt geometries as alternative resistive switching matrices are reported. The possible resistive switching nature of the novel triple matrices is also discussed together with their electrical and structural properties. The ability to eliminate both an external resistor for efficient CRS operation and a metallic Pt middle electrode for further cost‐effective scalability will accelerate progress toward the realization of cross‐bar ReRAM in this framework.  相似文献   

7.
Hybrid Perovskites have emerged as a class of highly versatile functional materials with applications in solar cells, photodetectors, transistors, and lasers. Recently, there have also been reports on perovskite‐based resistive switching (RS) memories, but there remain open questions regarding device stability and switching mechanism. Here, an RS memory based on a high‐quality capacitor structure made of an MAPbBr3 (CH3NH3PbBr3) perovskite layer sandwiched between Au and indium tin oxide (ITO) electrodes is reported. Such perovskite devices exhibit reliable RS with an ON/OFF ratio greater than 103, endurance over 103 cycles, and a retention time of 104 s. The analysis suggests that the RS operation hinges on the migration of charged ions, most likely MA vacancies, which reversibly modifies the perovskite bulk transport and the Schottky barrier at the MAPbBr3/ITO interface. Such perovskite memory devices can also be fabricated on flexible polyethylene terephthalate substrates with high bendability and reliability. Furthermore, it is found that reference devices made of another hybrid perovskite MAPbI3 consistently exhibit filament‐type switching behavior. This work elucidates the important role of processing‐dependent defects in the charge transport of hybrid perovskites and provides insights on the ion‐redistribution‐based RS in perovskite memory devices.  相似文献   

8.
3D organic–inorganic and all‐inorganic lead halide perovskites have been intensively pursued for resistive switching memories in recent years. Unfortunately, instability and lead toxicity are two foremost challenges for their large‐scale commercial applications. Dimensional reduction and composition engineering are effective means to overcome these challenges. Herein, low‐dimensional inorganic lead‐free Cs3Bi2I9 and CsBi3I10 perovskite‐like films are exploited for resistive switching memory applications. Both devices demonstrate stable switching with ultrahigh on/off ratios (≈106), ultralow operation voltages (as low as 0.12 V), and self‐compliance characteristics. 0D Cs3Bi2I9‐based device shows better retention time and larger reset voltage than the 2D CsBi3I10‐based device. Multilevel resistive switching behavior is also observed by modulating the current compliance, contributing to the device tunability. The resistive switching mechanism is hinged on the formation and rupture of conductive filaments of halide vacancies in the perovskite films, which is correlated with the formation of AgIx layers at the electrode/perovskite interface. This study enriches the library of switching materials with all‐inorganic lead‐free halide perovskites and offers new insights on tuning the operation of solution‐processed memory devices.  相似文献   

9.
Metal–organic framework (MOF) nanosheets have attracted significant interests for sensing, electrochemical, and catalytic applications. Most significantly, 2D MOF with highly accessible sites on the surface is expected to be applicable in data storage. Here, the memory device is first demonstrated by employing M‐TCPP (TCPP: tetrakis(4‐carboxyphenyl)porphyrin, M: metal) as resistive switching (RS) layer. The as‐fabricated resistive random access memory (RRAM) devices exhibit a typical electroforming free bipolar switching characteristic with on/off ratio of 103, superior retention, and reliability performance. Furthermore, the time‐dependent RS behaviors under constant voltage stress of 2D M‐TCPP–based RRAMs are systematically investigated. The properties of the percolated conducting paths are revealed by the Weibull distribution by collecting the measured turn‐on time. The multilevel information storage state can be gotten by setting a series of compliance current. The charge trapping assisted hopping is proposed as operation principle of the MOF‐based RRAMs which is further confirmed by atomic force microscopy at electrical modes. The research is highly relevant for practical operation of 2D MOF nanosheet–based RRAM, since the time widths, magnitudes of pulses, and multilevel‐data storage can be potentially set.  相似文献   

10.
CsPbX3 (X = halide, Cl, Br, or I) all‐inorganic halide perovskites (IHPs) are regarded as promising functional materials because of their tunable optoelectronic characteristics and superior stability to organic–inorganic hybrid halide perovskites. Herein, nonvolatile resistive switching (RS) memory devices based on all‐inorganic CsPbI3 perovskite are reported. An air‐stable CsPbI3 perovskite film with a thickness of only 200 nm is successfully synthesized on a platinum‐coated silicon substrate using low temperature all‐solution process. The RS memory devices of Ag/polymethylmethacrylate (PMMA)/CsPbI3/Pt/Ti/SiO2/Si structure exhibit reproducible and reliable bipolar switching characteristics with an ultralow operating voltage (<+0.2 V), high on/off ratio (>106), reversible RS by pulse voltage operation (pulse duration < 1 ms), and multilevel data storage. The mechanical flexibility of the CsPbI3 perovskite RS memory device on a flexible substrate is also successfully confirmed. With analyzing the influence of phase transition in CsPbI3 on RS characteristics, a mechanism involving conducting filaments formed by metal cation migration is proposed to explain the RS behavior of the memory device. This study will contribute to the understanding of the intrinsic characteristics of IHPs for low‐voltage resistive switching and demonstrate the huge potential of them for use in low‐power consumption nonvolatile memory devices on next‐generation computing systems.  相似文献   

11.
Determining the presence of conducting filaments in resistive random access memory with nanoscale thin films is vital to unraveling resistive switching mechanisms. Bistable resistive switching within graphene‐oxide (GO)‐based resistive memory devices, recently developed by many research groups, has been generally explained by the formation and rupture of conducting filaments induced by the diffusion of metal or oxygen ions. Using a low‐voltage spherical aberration‐corrected transmission electron microscopy (TEM), we directly observe metallic nanofilaments formed at the amorphous top interface layer with the application of external voltages in an Al/GO/Al memory system. Atomic‐resolution TEM images acquired at an acceleration voltage of 80 kV clearly show that the conducting nanofilaments are composed of nanosized aluminum crystalline within the amorphous top interface layer after applying a negative bias (ON state). Simultaneously, we observe the change in the crystallinity of GO films by the back‐diffusion of oxygen ions. The oxygen‐deficient regions are clearly confirmed by energy‐filtered TEM oxygen elemental mapping. This work could provide strong evidence to confirm the resistive switching mechanism previously suggested by our group.  相似文献   

12.
Memristors based on mixed anionic‐electronic conducting oxides are promising devices for future data storage and information technology with applications such as non‐volatile memory or neuromorphic computing. Unlike transistors solely operating on electronic carriers, these memristors rely, in their switch characteristics, on defect kinetics of both oxygen vacancies and electronic carriers through a valence change mechanism. Here, Pt|SrTiO3‐δ|Pt structures are fabricated as a model material in terms of its mixed defects which show stable resistive switching. To date, experimental proof for memristance is characterized in hysteretic current–voltage profiles; however, the mixed anionic‐electronic defect kinetics that can describe the material characteristics in the dynamic resistive switching are still missing. It is shown that chronoamperometry and bias‐dependent resistive measurements are powerful methods to gain complimentary insights into material‐dependent diffusion characteristics of memristors. For example, capacitive, memristive and limiting currents towards the equilibrium state can successfully be separated. The memristor‐based Cottrell analysis is proposed to study diffusion kinetics for mixed conducting memristor materials. It is found that oxygen diffusion coefficients increase up to 3 × 10–15 m2s–1 for applied bias up to 3.8 V for SrTiO3‐δ memristors. These newly accessible diffusion characteristics allow for improving materials and implicate field strength requirements to optimize operation towards enhanced performance metrics for valence change memristors.  相似文献   

13.
Memory for skin‐attachable wearable devices for healthcare monitoring must meet a number of requirements, including flexibility and stability in external environments. Among various memory technologies, organic‐based resistive random‐access memory (RRAM) devices are an attractive candidate for skin‐attachable wearable devices due to the high flexibility of organic materials. However, organic‐based RRAMs are particularly vulnerable to external moisture, making them difficult to apply as skin‐attachable wearable devices. In this research, RRAMs are fabricated that meet the requirements for skin‐attachable wearable devices using a novel organic material, nitrocellulose (NC), which is biocompatible with high water‐resistance and high flexibility. The fabricated NC‐based RRAMs show a stable bipolar resistive switching characteristic. In addition, the formation of a native Al oxide between Al and NC is verified, which is the source of the bipolar switching characteristic of NC‐based RRAMs. Furthermore, electrical and chemical analysis is conducted after dipping and submersion into various solutions as well as deionized water to confirm the water‐resistance of the NC‐based RRAMs. Finally, it is also confirmed that NC‐based RRAMs are suitable for use in skin‐attachable wearable devices through a flexibility test. In conclusion, this study suggests that NC‐based RRAMs can be applied in skin‐attachable wearable devices, simplifying healthcare in the future.  相似文献   

14.
Black phosphorous (BP) is a unique layered p‐type semiconducting material. The successful use of BP nanosheets in field‐effect transistors fueled research on BP atomic layers that focuses on, e.g., the exploration of their optical and electronic properties, and promising applications in (opto)electronics. However, BP films are prone to degradation in ambient conditions, which prevents their commercial application. Here, a route to the application of BP films as an environmental stable nonvolatile resistive random access memory is presented. The BP films, which are prepared from exfoliated BP nanosheets in selected solvents, show solvent‐dependent degradation upon ambient exposure, inducing the formation of an amorphous top degraded layer (TDL). The TDL acts as an insulating barrier just below the Al electrode. This property that was only obtained by degradation, confers a bipolar resistive switching behavior with a high ON/OFF current ratio up to ~3 × 105 and excellent retention ability over 105 s to the flexible BP memory devices. The TDL also prevents propagation of degradation further into the film, ensuring excellent memory performance even after three month of ambient exposure.  相似文献   

15.
It is discovered that the memory‐type behaviors of novel carbohydrate‐block ‐polyisoprene (MH‐b ‐PI) block copolymers‐based devices, including write‐once‐read‐many‐times, Flash, and dynamic‐random‐access‐memory, can be easily controlled by the self‐assembly nanostructures (vertical cylinder, horizontal cylinder, and order‐packed sphere), in which the MH and PI blocks, respectively, provide the charge‐trapping and stretchable function. With increasing the flexible PI block length, the stretchability of the designed copolymers can be significantly improved up to 100% without forming cracks. Thus, intrinsically stretchable resistive memory devices (polydimethylsiloxane(PDMS)/carbon nanotubes(CNTs)/MH‐b ‐PI thin film/Al) using the MH‐b ‐PI thin film as an active layer is successfully fabricated and that using the MH‐b ‐PI12.6k under 100% strain exhibits an excellent ON/OFF current ratio of over 106 (reading at ?1 V) with stable V set around ?2 V. Furthermore, the endurance characteristics can be maintained over 500 cycles upon 40% strain. This work establishes and represents a novel avenue for the design of green carbohydrate‐derived and stretchable memory materials.  相似文献   

16.
All polymer nonvolatile bistable memory devices are fabricated from blends of ferroelectric poly(vinylidenefluoride–trifluoroethylene (P(VDF‐TrFE)) and n‐type semiconducting [6,6]‐phenyl‐C61‐butyric acid methyl ester (PCBM). The nanoscale phase separated films consist of PCBM domains that extend from bottom to top electrode, surrounded by a ferroelectric P(VDF‐TrFE) matrix. Highly conducting poly(3,4‐ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) polymer electrodes are used to engineer band offsets at the interfaces. The devices display resistive switching behavior due to modulation of this injection barrier. With careful optimization of the solvent and processing conditions, it is possible to spin cast very smooth blend films (Rrms ≈ 7.94 nm) and with good reproducibility. The devices exhibit high Ion/Ioff ratios (≈3 × 103), low read voltages (≈5 V), excellent dielectric response at high frequencies (?r ≈ 8.3 at 1 MHz), and excellent retention characteristics up to 10 000 s.  相似文献   

17.
We demonstrate bipolar switching of organic resistive memory devices consisting of Ag/polymer/heavily‐doped p‐type poly Si junctions in an 8 × 8 cross‐bar array structure. The bistable switching mechanism appears to be related to the formation and rupture of highly conductive paths, as shown by a direct observation of Ag metallic bridges using transmission electron microscopy and energy‐dispersive X‐ray spectroscopy. Current images of high‐ and low‐conducting states acquired by conducting atomic force microscopy also support this filamentary switching mechanism. The filamentary formation can be described by an electrochemical redox reaction model of Ag. Our results may also be applied to other kinds of organic materials presenting similar switching properties, contributing to the optimization of device scaling or memory performance improvement.  相似文献   

18.
Neuromorphic computing, which mimics biological neural networks, can overcome the high‐power and large‐throughput problems of current von Neumann computing. Two‐terminal memristors are regarded as promising candidates for artificial synapses, which are the fundamental functional units of neuromorphic computing systems. All‐inorganic CsPbI3 perovskite‐based memristors are feasible to use in resistive switching memory and artificial synapses due to their fast ion migration. However, the ideal perovskite phase α‐CsPbI3 is structurally unstable at ambient temperature and rapidly degrades to a non‐perovskite δ‐CsPbI3 phase. Here, dual‐phase (Cs3Bi2I9)0.4?(CsPbI3)0.6 is successfully fabricated to achieve improved air stability and surface morphology compared to each single phase. Notably, the Ag/polymethylmethacrylate/(Cs3Bi2I9)0.4?(CsPbI3)0.6/Pt device exhibits non‐volatile memory functions with an endurance of ≈103 cycles and retention of ≈104 s with low operation voltages. Moreover, the device successfully emulates synaptic behavior such as long‐term potentiation/depression and spike timing/width‐dependent plasticity. This study will contribute to improving the structural and mechanical stability of all‐inorganic halide perovskites (IHPs) via the formation of dual phase. In addition, it proves the great potential of IHPs for use in low‐power non‐volatile memory devices and electronic synapses.  相似文献   

19.
Organic resistive memory devices are one of the promising next‐generation data storage technologies which can potentially enable low‐cost printable and flexible memory devices. Despite a substantial development of the field, the mechanism of the resistive switching phenomenon in organic resistive memory devices has not been clearly understood. Here, the time–dependent current behavior of unipolar organic resistive memory devices under a constant voltage stress to investigate the turn‐on process is studied. The turn‐on process is discovered to occur probabilistically through a series of abrupt increases in the current, each of which can be associated with new conducting paths formation. The measured turn‐on time values can be collectively described with the Weibull distribution which reveals the properties of the percolated conducting paths. Both the shape of the network and the current path formation rate are significantly affected by the stress voltage. A general probabilistic nature of the percolated conducting path formation during the turn‐on process is demonstrated among unipolar memory devices made of various materials. The results of this study are also highly relevant for practical operations of the resistive memory devices since the guidelines for time‐widths and magnitudes of voltage pulses required for writing and reading operation can be potentially set.  相似文献   

20.
Hexagonal boron nitride (hBN), which is a 2D layered dielectric material, sometimes referred as “white graphene” due to its structural similarity with graphene, has attracted much attention due to its fascinating physical properties. Here, for the first time the use of chemical vapor deposition ‐grown hBN films to fabricate ultrathin (≈3 nm) flexible hBN‐based resistive switching memory device is reported, and the switching mechanism through conductive atomic force microscopy and ex situ transmission electron microscopy is studied. The hBN‐based resistive memory exhibits reproducible switching endurance, long retention time, and the capability to operate under extreme bending conditions. Contrary to the conventional electrochemical metallization theory, the conductive filament is found to commence its growth from the anode to cathode. This work provides an important step for broadening and deepening the understanding on the switching mechanism in filament‐based resistive memories and propels the 2D material application in the resistive memory in future computing systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号