首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
BACKGROUND: The removal of cationic dyes from wastewater is of great importance. Three zeolites synthesized from coal fly ashes (ZFAs) were investigated as adsorbents to remove methylene blue (MB), a cationic dye, from aqueous solutions. Experiments were conducted using the batch adsorption technique under different conditions of initial dye concentration, adsorbent dose, solution pH, and salt concentration. RESULTS: The adsorption isotherm data of MB on ZFAs were fitted well to the Langmuir model. The maximum adsorption capacities of MB by the three ZFAs, calculated using the Langmuir equation, ranged from 23.70 to 50.51 mg g?1. The adsorption of MB by ZFA was essentially due to electrostatic forces. The measurement of zeta potential indicated that ZFA had a lower surface charge at alkaline pH, resulting in enhanced removal of MB with increasing pH. MB was highly competitive compared with Na+, leading to only a < 6% reduction in adsorption in the presence of NaCl up to 1.0 mol L?1. Regeneration of used ZFA was achieved by thermal treatment. In this study, 90–105% adsorption capacity of fresh ZFA was recovered by heating at 450 °C for 2 h. CONCLUSION: The experimental results suggest that ZFA could be employed as an adsorbent in the removal of cationic dyes from wastewater, and the adsorptive ability of used ZFA can be recovered by thermal treatment. Copyright © 2010 Society of Chemical Industry  相似文献   

2.
The present study explains the preparation and application of sulfuric acid–treated orange peel (STOP) as a new low-cost adsorbent in the removal of methylene blue (MB) dye from its aqueous solution. The effects of temperature on the operating parameters such as solution pH, adsorbent dose, initial MB dye concentration, and contact time were investigated for the removal of MB dye using STOP. The maximum adsorption of MB dye onto STOP took place in the following experimental conditions: pH of 8.0, adsorbent dose of 0.4 g, contact time of 45 min, and temperature of 30°C. The adsorption equilibrium data were tested by applying both the Langmuir and Freundlich isotherm models. It is observed that the Freundlich isotherm model fitted better than the Langmuir isotherm model, indicating multilayer adsorption, at all studied temperatures. The adsorption kinetic results showed that the pseudo-second-order model was more suitable to explain the adsorption of MB dye onto STOP. The adsorption mechanism results showed that the adsorption process was controlled by both the internal and external diffusion of MB dye molecules. The values of free energy change (ΔG o) and enthalpy change (ΔH o) indicated the spontaneous, feasible, and exothermic nature of the adsorption process. The maximum monolayer adsorption capacity of STOP was also compared with other low-cost adsorbents, and it was found that STOP was a better adsorbent for MB dye removal.  相似文献   

3.
The adsorption of methylene blue (MB) on graphene-based adsorbents was tested through the batch experimental method. Two types of graphene-based adsorbents as graphene oxide (GO) and reduced graphene oxide (RGO) were compared to investigate the best adsorbent for MB removal. So that optimizing the MB removal for the selected type of graphene-based adsorbent, the diverse experimental factors, as pH (2–10), contact time (0–1440 min), adsorbent dosage (0.5–2 g/L), and initial MB concentration (25–400 mg/L) were analyzed. The conclusions indicated that the MB removal rised with an increase in the initial concentration of the MB and so rises in the amount of adsorbent used and initial pH. Maximum dye removal was calculated as 99.11% at optimal conditions after 240 min. Adsorption data were compiled by the Langmuir isotherm (R2: 0.999) and pseudo-second-order kinetic models (R2: 0.999). The Langmuir isotherm model accepted that the homogeneous surface of the GO adsorbent covering with a single layer. And the adsorption energy was calculated as 9.38 kJ mol−1 according to the D-R model indicating the chemical adsorption occurred. The results show that GO could be utilized for the treatment of dye-contaminated aqueous solutions effectively.  相似文献   

4.
Adsorption characteristics of methylene blue (MB) from aqueous solution on natural poplar leaf were investigated. Batch experiments were carried out to study the effects of initial pH, contact time, adsorbent dosage, and initial MB concentration, salt concentration (Ca2+ and Na+) as well as temperature on MB adsorption. The optimum condition for adsorption was found at pH 6–9 and adsorbent dosage of 2 g L−1. The equilibration time was 240 min. The salt concentration had a negative effect on MB removal. The equilibrium data were analyzed with Langmuir, Freundlich and Koble-Corrigan isotherm models using nonlinear regression method. The adsorption process was more effectively described by Langmuir isotherm based on the values of the correlation coefficient R2 and chi-square statistic x2. The maximum monolayer adsorption capacity of poplar leaf from the Langmuir model was 135.35 mg g−1 at 293 K. The pseudo second order equation provided a better fit to experimental data in the kinetic studies. Intraparticle diffusion was involved in adsorption process, but it was not the only rate-controlling step. Thermodynamic quantities such as ΔG, ΔH and ΔS were calculated, indicating that the adsorption process was spontaneous and endothermic. Dye-adsorbent interactions were examined by FTIR and SEM analysis. The FTIR results suggested that there were hydroxyl and carboxyl groups on the surface of poplar leaf, which would make MB adsorption possible. The SEM images showed effective adsorption of MB molecules on the adsorbent surface.  相似文献   

5.
A novel fibrous adsorbent that grafts glycidyl methacrylate (GMA) and methacrylic acid (MAA) monomer mixture onto poly(ethylene terephthalate) (PET) fibers was used for removal of methylene blue (MB) in aqueous solutions by a batch equilibration technique. The operation parameters investigated included, pH of solution, removal time, graft yield, dye concentration, and reaction temperature. The adsorption rate of MB is much higher on the MAA/GMA‐grafted PET fibers than on the ungrafted PET fibers. MB was removed 99% the initial dye concentration at 10 mg L−1 and 93% at 200 mg L−1 by monomers mixture‐grafted PET fibers. Pseudofirst order and pseudosecond order kinetic equations were used to examine the experimental data of different graft yield. It was found that the pseudosecond order kinetic equation described the data of dye adsorption on fibrous adsorbent very well. The experimental isotherms data were analyzed using Langmuir and Freundlich isotherm models. The data was that Freundlich isotherm model fits the data very well for the dyes on the fibers adsorbent. The dye adsorbed was easily desorbed by treating with acetic acid/methanol mixture (50% V/V) at room temperature. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

6.
In this paper, different particle sizes of coal fly ash FA-R (D50=15.75μm), FA-A (D50=3.61μm) and FA-B (D50=1.73μm) were treated with NaOH solution to prepare the forming adsorbents FFA-R, FFA-A and FF...  相似文献   

7.
In this paper, different particle sizes of coal fly ash FA-R (D50=15.75μm), FA-A (D50=3.61μm) and FA-B (D50=1.73μm) were treated with NaOH solution to prepare the forming adsorbents FFA-R, FFA-A and FFA-B. The structure and adsorption properties of the forming adsorbents for methylene blue (MB) from aqueous solu-tion were examined. The results showed that the specific surface areas and adsorption capacities of the forming adsorbent for MB increased with decreasing particle size of raw coal fly ashes. The adsorption kinetic data of MB on FFA-R, FFA-A and FFA-B fitted the second-order kinetic model very wel with the rate constants (k2) of 3.15 × 10?2, 3.84 × 10?2 and 6.27 × 10?2 g·mg?1·min?1, respectively. The adsorption process was not only con-trol ed by intra-particle diffusion. The isotherms of MB on FFA-R, FFA-A and FFA-B can be described by the Lang-muir isotherm and the Freundlich isotherm, and the adsorption processes were spontaneous and exothermic. ? 2014 The Chemical Industry and Engineering Society of China, and Chemical Industry Press. Al rights reserved.  相似文献   

8.
A latex sponge is modified by chitosan, tannic acid, and silane coupling agent KH550 to prepare an oleophobic sponge adsorbent, which can adsorb different kinds of charged dyes and Cu2+. The static adsorption capacity of the latex sponge before and after modification to methyl orange (MO) (negative charge), rhodamine B (RB) (neutral), methylene blue (MB) (positive charge), and Cu2+ under different initial concentration, pH, and reaction temperature are investigated, and simulations of adsorption kinetics and isotherms are performed. The modified latex sponge improves the overall adsorption capacity along with the initial concentration and increases reaction temperature. The adsorption capacity of the adsorbent expands; when the pH is low, it is beneficial to adsorb MO and RB, and when the pH is high, it is favorable for the adsorption of MB and Cu2+. Adsorption kinetics and isotherm data show that the isotherm dates of pure latex sponge conform to the Langmuir isotherm model, while the isotherm dates of modified latex sponge conform to the Freundich isotherm model; however both of them are more fitted with the pseudo-second-order adsorption model, and the chemical adsorption is the main one.  相似文献   

9.
The adsorption and heat‐energy‐aid desorption of methylene blue (MB) on a thermo‐sensitive adsorbent of methyl cellulose/calcium alginate beads (MC/CABs) has been studied. The addition of methyl cellulose intensified the desorption ability of adsorbent, and boosted the difference of adsorption capacity of adsorbent between low temperature and high temperature. At the mass ratio of methyl cellulose to sodium alginate of 2:1, the difference of adsorption capacity of MC/CABs between 20 and 60°C reached 20.48 mg g?1. The effects of temperature, time and initial MB concentration on adsorption performance were investigated in detail. The MB adsorption on MC/CABs followed the pseudo‐second‐order kinetic model. The equilibrium data was fitted well with Langmuir isotherm. The maximum adsorption capacity of 336.70 mg g?1 exhibited MC/CABs had a good adsorption capability. Thermodynamic analyses showed high temperature was not favorable to MB adsorption, and MC/CABs had a distinct superiority in desorption of adsorbate with heat‐energy‐aid. Lastly, the possible mechanisms involving in adsorption and heat‐energy‐aid desorption were presented. POLYM. ENG. SCI., 56:1382–1389, 2016. © 2016 Society of Plastics Engineers  相似文献   

10.
A novel magnetic adsorbent was synthesized by magnetizing bentonite by APTES-Fe_3O_4 via a functional groupbridged interaction. The characterization of APTES-Fe_3O_4/bentonite was conducted via transmission electron microscope(TEM), X-ray diffraction(XRD), Fourier transform infrared spectrophotometer(FT-IR), thermal gravimetric analysis(TGA), vibrating sample magnetometer(VSM), zeta potential analysis and Brunner–Emmet–Teller(BET). The APTES-Fe_3O_4/bentonite was assessed as adsorbents for methylene blue(MB) with a high adsorption capacity(91.83 mg·g~(-1)). Factors affecting the adsorption of MB(such as p H, equilibrium time, temperature and initial concentration) were investigated. The adsorption process completely reaches equilibrium after 120 min and the maximum sorption is achieved at p H 8.0. The adsorption trend follows the pseudosecond order kinetics model. The adsorption data gives good fits with Langmuir isotherm model. The parameter factor RLfalls between 0 and 1, indicating the adsorption of MB is favorable. The adsorption process is endothermic with positive ΔH~0 values. The positive values of ΔG~0 confirm the affinity of the adsorbent towards MB, and suggest an increased randomness at the solid–liquid interface during the adsorption process. Regeneration of the saturated adsorbent was easily carried out via gamma-irradiation.  相似文献   

11.
Peach stones (PS) modified by citric acid (MPS) were used to remove heavy metals and methylene blue (MB) from wastewater. The effects of experimental factors such as pH, adsorbent dosage and contact time, etc. were conducted. Moreover, the adsorption kinetics and isotherm studies also were investigated. According to the Langmuir isotherm model, the maximum adsorption capacities of Pb2+, Cd2+, Cu2+ and MB were 118.76, 37.48, 32.22 and 178.25 mg/g, respectively. Finally, column experiments were also carried out to investigate the adsorption of Pb2+ and MB. All results indicated that PS has a good potential for the treatment of wastewater.  相似文献   

12.
A novel chitosan (CTS)-based double network Poly(2-acrylaMido-2-Methyl-1-propanesulfonic acid)/Polyacrylamide/CTS hydrogel was synthesized by irradiation initiated. Laponite RD (RD) was used as both dopant and the cross-linking agent. Then the fabricated hydrogel was applied as an efficient adsorbent to remove the methylene blue (MB) in an aqueous solution. This hydrogel has both high strength and good adsorption properties for MB. The results from Brunauer–Emmett–Teller method confirmed that the hydrogel has a large specific surface area (96 m2/g) and developed pore structure, which is available for the contact between the adsorbent and dye molecules. In the adsorption process, the RD provides plenty of negative charges as adsorption sites for MB molecules. The influence of pH, temperature, and adsorbent dose on the adsorption performance was investigated in detail. The experimental data fit well with the pseudo-second-order kinetic model and Langmuir isotherm. Besides, the mechanical strength of the hydrogel was also investigated in this work.  相似文献   

13.
In the present batch study, eucalyptus leaves (EUL), H2SO4‐treated eucalyptus leaves (SEUL), and H3PO4‐treated eucalyptus leaves (PEUL) are used as bio‐adsorbents for the removal of methylene blue (MB). The bio‐adsorption is executed to inspect the results of the variation between different experimental variables such as pH (2–10), adsorbent dose (1–10 g/L), contact time (5–360 min), and temperature (298–318 K) on the bio‐adsorption of MB. The Langmuir isotherm (R2 = 0.99) fitted adequately to the bio‐adsorption data for the initial MB concentrations of 10–300 mg/L. It is also necessary to mention that the MB bio‐adsorption occurred in the order of a monolayer on the EUL, SEUL, and PEUL. The bio‐adsorption kinetics have been fitted by the pseudo‐second‐order model (R2 ≥ 0.99) for various MB concentrations. The maximum bio‐adsorption capacity was 194.34 mg/g and was achieved for the H3PO4‐treated eucalyptus leaves (PEUL). These results showed that EUL, SEUL, and PEUL may be utilized as a favourable low‐cost bio‐adsorbent to eliminate MB from aqueous solutions. With safe disposal methods in mind, this investigation has revealed the eco‐friendliness of the bio‐adsorbents. A prediction of the removal percentage of methylene blue using a genetic algorithm (GA) from the data collected from the experiment has also been tested. The results related to the prediction using the GA‐ANN are accurate.  相似文献   

14.
Cationic dye can cause severe damage to the environment due to their refractory degradation, complex composition and strong stability. Hydrogels as adsorbents have been widely used to treatment the wastewater with dyestuff for their low prices, simple operations, and high efficiency. This work uses poly(acrylic acid) (PAA)/poly(acrylamide)(PAM)/calcium hydroxide nanoparticles (CHN) polymeric hydrogel absorbent to eliminate methylene blue (MB) dye. First, PAM/PAA/CHN hydrogel is produced through copolymerization of acrylic acid monomer and acrylamide monomer using inorganic CHN as cross-linker. And then, the adsorption performance of such PAM/PAA/CHN hydrogel adsorbent for adsorbing MB dye is explored at different conditions including pH, contacting time, adsorbent dosage, initial concentration of MB, and temperature. A maximum adsorption capability for adsorbing MB reaches 1,056 mg/g. Furthermore, the pseudo-first-order mode and Langmuir isotherm model can well describe adsorption behavior of MB dye onto such PAA/PAM/CHN hydrogel adsorbent. Thereby, as-prepared PAA/PAM/CHN hydrogel could be a potential adsorbent for eliminating organic dyes from wastewater.  相似文献   

15.
The binary chitosan/silk fibroin composite synthesized by reinforcement of silk fibroin fiber into the homogenous solution of chitosan in formic acid was used to investigate the adsorption of two metals of Cu(II) and Cd(II) ions in an aqueous solution. The binary composite was characterized by Fourier transform infrared and scanning electron microscopy. The optimum conditions for adsorption by using a batch method were evaluated by changing various parameters such as contact time, adsorbent dose, and pH of the solution. The experimental isotherm data were analyzed using the Freundlich and Langmuir equations, indicated to be well fitted to the Langmuir isotherm equation under the concentration range studied, by comparing the correlation co‐efficient. Adsorption kinetics data were tested using pseudo‐first‐order and pseudo‐second‐order models. Kinetics studies showed that the adsorption followed a pseudo‐second‐order reaction. Due to good performance and low cost, this binary chitosan/silk fibroin composite can be used as an adsorbent for removal of Cu(II) and Cd(II) from aqueous solutions. POLYM. COMPOS., 2013. © 2013 Society of Plastics Engineers  相似文献   

16.
《分离科学与技术》2012,47(1):129-141
The present study reports the feasibility of two synthetic crystalline lamellar nano-silicates, sodic magadiite (Na-mag) and its converted acidic form (H-mag), as alternative adsorbents for the removal of the dye methylene blue (MB) from aqueous solutions. The ability of these adsorbents for removing the dye was explored through the batch adsorption procedure. Effects such as the pH and the adsorbent dosage on the adsorption capacities were explored. Four kinetic models were applied, the adsorption being best fitted to a fractionary-order kinetic model. The kinetic data were also adjusted to an intra-particle diffusion model to give two linear regions, indicating that the kinetics of adsorption follows multiple sorption rates. The equilibrium data were fitted to Langmuir, Freundlich, Sips, and Redlich-Peterson isotherm models. The maxima adsorption capacities for MB of Na-mag and H-mag were 331 and 173 mg g?1, respectively.  相似文献   

17.
In this study, poly(vinyl alcohol) (PVA) and poly(ethylene oxide) (PEO) hydrogels were synthesized and evaluated as adsorbent for dye removal from wastewater using methylene blue (MB) in aqueous solution as probe. PEO samples were photochemically prepared by varying irradiation time (1–16 h), while PVA samples were synthetized with different concentration of glutaraldehyde (GA) (0.03–0.48%). The obtained hydrogels were obtained through the analysis of a swelling test, scanning electron microscopy, and adsorption studies. PEO hydrogels adsorption capacity was dependent on the irradiation time, while the PVA hydrogel adsorption capacity reduces with GA concentration. Both hydrogels demonstrated a Langmuir isotherm adsorption model at the equilibrium and pseudo‐second order kinetic fits properly. pH studies showed that when pH reaches 12, the adsorbed MB amount is close to 8 and 2 times higher than pH = 2 both hydrogels. Photochemical preparation of hydrogels shows an easier way of tuning their properties in order to maximize dye removal. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 45043.  相似文献   

18.
19.
In this paper, the use of cold plasma‐treated and formaldehyde‐treated onion skins as a biosorbent has been investigated to remove methylene blue dye from aqueous solutions. The surface characteristics of the treated onion skins were investigated using Fourier Transform–infrared spectroscopy. The influence of process variables such as adsorbent dosage, initial dye concentration and pH were studied. Equilibrium isotherms were analysed by Langmuir, Freundlich, Temkin and Dubinin–Radushkevich isotherm models. The results indicated that the data for adsorption of methylene blue onto onion skins fitted well with the Langmuir isotherm model. The sorption capacities for cold plasma‐treated and formaldehyde‐treated onion skins by Langmuir isotherm were found to be 250 and 166.67 mg/g, respectively. The equilibrium time was found to be 150 min for 50 mg/l dye concentrations. The maximum removals for cold plasma‐treated and formaldehyde‐treated onion skins obtained were 90.94 and 95.54% at natural pH 10.0 for adsorbent doses of 0.15 g/200 ml, respectively. The rates of sorption were found to conform to pseudo‐first‐order kinetics. Results indicated that onion skins could be used as a biosorbent to remove methylene blue dye from contaminated waters.  相似文献   

20.
《分离科学与技术》2012,47(10):1542-1551
In this paper, cold plasma (CPTAS), formaldehyde (FTAS), and microwave radiation treated (MTAS) acorn shell obtained from Quercus petraea tree as biosorbent was characterized and its dye removal ability at different dye concentrations was studied. The isoelectric point, functional groups and morphology of acorn shell was investigated as adsorbent surface characteristics. Fourier transform infrared (FTIR), scanning electron microscopy (SEM), and UV–Vis spectrophotometry were used. Methylene blue (MB) was used as model cationic dye. The Langmuir and Freundlich adsorption isotherm models were applied to describe the equilibrium isotherms. The results indicated that the data for adsorption of MB onto treated acorn shell fitted well with the Langmuir isotherm model. Comparison of adsorption capacities of CPTAS with FTAS has shown a significant increase by as much as about 30 mg/g (33.32%) in MB adsorption.The pseudo-first order, pseudo-second order kinetic models were examined to evaluate the kinetic data, and the rate constants were calculated. Adsorption kinetic of dyes followed pseudo-first order kinetics. Thermodynamic parameters such as free energy, enthalpy, and entropy of dye adsorption were obtained. The results indicated that acorn shell could be used as a natural biosorbent for the removal of cationic dyes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号