首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A novel approach for alternating current (AC)‐driven organic light‐emitting devices is reported, which uses the concept of molecular doping in organic semiconductors. Doped organic charge‐transport layers are used to generate charge carriers within the device, hence eliminating the need for injecting charge carriers from external electrodes. Bright luminance of up to 1000 cd m?2 is observed when the device is driven with an AC bias. The luminance observed is attributed to charge‐carrier generation and recombination, leading to the formation of excitons within the device, without injection of charge carriers through external electrodes. A mechanism for internal charge‐carrier generation and the device operation is proposed.  相似文献   

2.
High‐performance, blue, phosphorescent organic light‐emitting diodes (PhOLEDs) are achieved by orthogonal solution‐processing of small‐molecule electron‐transport material doped with an alkali metal salt, including cesium carbonate (Cs2CO3) or lithium carbonate (Li2CO3). Blue PhOLEDs with solution‐processed 4,7‐diphenyl‐1,10‐phenanthroline (BPhen) electron‐transport layer (ETL) doped with Cs2CO3 show a luminous efficiency (LE) of 35.1 cd A?1 with an external quantum efficiency (EQE) of 17.9%, which are two‐fold higher efficiency than a BPhen ETL without a dopant. These solution‐processed blue PhOLEDs are much superior compared to devices with vacuum‐deposited BPhen ETL/alkali metal salt cathode interfacial layer. Blue PhOLEDs with solution‐processed 1,3,5‐tris(m‐pyrid‐3‐yl‐phenyl)benzene (TmPyPB) ETL doped with Cs2CO3 have a luminous efficiency of 37.7 cd A?1 with an EQE of 19.0%, which is the best performance observed to date in all‐solution‐processed blue PhOLEDs. The results show that a small‐molecule ETL doped with alkali metal salt can be realized by solution‐processing to enhance overall device performance. The solution‐processed metal salt‐doped ETLs exhibit a unique rough surface morphology that facilitates enhanced charge‐injection and transport in the devices. These results demonstrate that orthogonal solution‐processing of metal salt‐doped electron‐transport materials is a promising strategy for applications in various solution‐processed multilayered organic electronic devices.  相似文献   

3.
Since the beginning of organic light‐emitting diodes (OLEDs), blue emission has attracted the most attention and many research groups worldwide have worked on the design of materials for stable and highly efficient blue OLEDs. However, almost all the high‐efficiency blue OLEDs using fluorescent materials are multilayer devices, which are constituted of a stack of organic layers to improve the injection, transport, and recombination of charges within the emissive layer. Although the technology has been mastered, it suffers from real complexity and high cost and is time‐consuming. Simplifying the multilayer structure with a single‐layer one, the simplest devices made only of electrodes and the emissive layer have appeared as an appealing strategy for this technology. However, removing the functional organic layers of an OLED stack leads to a dramatic decrease of the performance and achieving high‐efficiency blue single‐layer OLEDs requires intense research especially in terms of materials design. Herein, an exhaustive review of blue emitting fluorophores that have been incorporated in single‐layer OLEDs is reported, and the links between their electronic properties and the device performance are discussed. Thus, a structure/properties/device performance relationship map is drawn, which is of interest for the future design of organic materials.  相似文献   

4.
Efficient transparent organic light‐emitting diodes (OLEDs) with improved stability based on conductive, transparent poly(3,4‐ethylenedioxythiophene): poly(styrenesulfonate) (PEDOT:PSS) electrodes are reported. Based on optical simulations, the device structures are carefully optimized by tuning the thickness of doped transport layers and electrodes. As a result, the performance of PEDOT:PSS‐based OLEDs reaches that of indium tin oxide (ITO)‐based reference devices. The efficiency and the long‐term stability of PEDOT:PSS‐based OLEDs are significantly improved. The structure engineering demonstrated in this study greatly enhances the overall performances of ITO‐free transparent OLEDs in terms of efficiency, lifetime, and transmittance. These results indicate that PEDOT:PSS‐based OLEDs have a promising future for practical applications in low‐cost and flexible device manufacturing.  相似文献   

5.
Fabricating high‐quality transparent conductors using inexpensive and industrially viable techniques is a major challenge toward developing low cost optoelectronic devices such as solar cells, light emitting diodes, and touch panel displays. In this work, highly transparent and conductive ZnO thin films are prepared from a low‐temperature, aqueous deposition method through the careful control of the reaction chemistry. A robotic synthetic platform is used to explore the wide parameter space of a chemical bath system that uses only cheap and earth abundant chemicals for thin film deposition. As‐deposited films are found to be highly resistive, however, through exposure to several millisecond pulses of high‐intensity, broadband light, intrinsically doped ZnO films with sheet resistances as low as 40 Ω □?1 can be readily prepared. Such values are comparable with state‐of‐the‐art‐doped transparent conducting oxides. The mild processing conditions (<150 °C) of the ZnO electrodes also enable their deposition on temperature sensitive substrates such as PET, paving the way for their use in various flexible optoelectronic devices. Proof‐of‐concept light emitting devices employing ZnO as a transparent electrode are presented.  相似文献   

6.
A novel, highly efficient hole injection material based on a conducting polymer polythienothiophene (PTT) doped with poly(perfluoroethylene‐perfluoroethersulfonic acid) (PFFSA) in organic light‐emitting diodes (OLEDs) is demonstrated. Both current–voltage and dark‐injection‐current transient data of hole‐only devices demonstrate high hole‐injection efficiency employing PTT:PFFSA polymers with different organic charge‐transporting materials used in fluorescent and phosphorescent organic light‐emitting diodes. It is further demonstrated that PTT:PFFSA polymer formulations applied as the hole injection layer (HIL) in OLEDs reduce operating voltages and increase brightness significantly. Hole injection from PTT:PFFSA is found to be much more efficient than from typical small molecule HILs such as copper phthalocyanine (CuPc) or polymer HILs such as polyethylene dioxythiophene: polystyrene sulfonate (PEDOT‐PSS). OLED devices employing PTT:PFFSA polymer also demonstrate significantly longer lifetime and more stable operating voltages compared to devices using CuPc.  相似文献   

7.
An approach to produce organic light‐emitting transistors (OLETs) containing a laterally arranged heterojunction structure, which minimizes exciton quenching at the metal electrodes, is described. This device configuration provides an organic light‐emitting diode (OLED) structure where the anode (source) electrode, hole‐transport material (field‐effect material), light‐emitting material, and cathode (drain) electrode are laterally arranged, thus offering a chance to control the electroluminescent intensity by changing the gate bias. Pentacene and tris(8‐quinolinolato)aluminum (Alq3) are employed as the field‐effect and light‐emitting materials, respectively. The laterally arranged heterojunction structures are achieved by successively inclined deposition of the field‐effect and light‐emitting materials. After deposition of pentacene, a narrow gap of about 10–20 nm between the drain electrode and pentacene was obtained, thereby creating an opportunity to fabricate a laterally arranged heterojunction. In the OLETs, unsymmetrical source and drain electrodes, that is, Au and LiF/Al ones, are used to ensure efficient injection of holes and electrons. Visible‐light emission from OLETs is observed under ambient atmosphere. This result is ascribed to efficient carrier injection and transport, formation of a heterojunction, as well as good luminescence from the organic emissive layer. The device structure serves as an excellent model system for OLETs and demonstrates a general concept of adjusting the charge‐carrier injection and transport, as well as the electroluminescent properties, by forming laterally arranged heterojunctions.  相似文献   

8.
Light‐emitting electrochemical cells (LECs) are solid‐state lighting devices that convert electric current to light within electroluminescent organic semiconductors, and these devices have recently attracted significant attention. Introduced in 1995, LECs are considered a great breakthrough in the field of light‐emitting devices for their applications in scalable and adaptable fabrication processes aimed at producing cost‐efficient devices. Since then, LECs have evolved through the discovery of new suitable emitters, understanding the working mechanism of devices, and the development of various fabrication methods. LECs are best known for their simple architecture and easy, low‐cost fabrication techniques. The key feature of their fabrication is the use of air stable electrodes and a single active layer consisting of mobile ions that enable efficient charge injection and transport processes within LEC devices. More importantly, LEC devices can be operated at low voltages with high efficiencies, contributing to their widespread interest. This review provides a general overview of the development of LECs and discusses how small molecules can be utilized in LEC applications by overcoming the use of traditional lighting materials like polymers and ionic transition metal complexes. The achievements of each study concerning small molecule LECs are discussed.  相似文献   

9.
Electron injection from the source–drain electrodes limits the performance of many n‐type organic field‐effect transistors (OFETs), particularly those based on organic semiconductors with electron affinities less than 3.5 eV. Here, it is shown that modification of gold source–drain electrodes with an overlying solution‐deposited, patterned layer of an n‐type metal oxide such as zinc oxide (ZnO) provides an efficient electron‐injecting contact, which avoids the use of unstable low‐work‐function metals and is compatible with high‐resolution patterning techniques such as photolithography. Ambipolar light‐emitting field‐effect transistors (LEFETs) based on green‐light‐emitting poly(9,9‐dioctylfluorene‐alt‐benzothiadiazole) (F8BT) and blue‐light‐emitting poly(9,9‐dioctylfluorene) (F8) with electron‐injecting gold/ZnO and hole‐injecting gold electrodes show significantly lower electron threshold voltages and several orders of magnitude higher ambipolar currents, and hence light emission intensities, than devices with bare gold electrodes. Moreover, different solution‐deposited metal oxide injection layers are compared. By spin‐coating ZnO from a low‐temperature precursor, processing temperatures could be reduced to 150 °C. Ultraviolet photoemission spectroscopy (UPS) shows that the improvement in transistor performance is due to reduction of the electron injection barrier at the interface between the organic semiconductor and ZnO/Au compared to bare gold electrodes.  相似文献   

10.
A study of an efficient blue light‐emitting diode based on a fluorescent aryl polyfluorene (aryl‐F8) homopolymer in an inverted device architecture is presented, with ZnO and MoO3 as electron‐ and hole‐injecting electrodes, respectively. Charge‐carrier balance and color purity in these structures are achieved by incorporating poly(9,9‐dioctylfluorene‐co‐N‐(4‐butylphenyl)‐diphenylamine (TFB) into aryl‐F8. TFB is known to be a hole‐transporting material but it is found to act as a hole trap on mixing with aryl‐F8. Luminance efficiency of ≈6 cd A?1 and external quantum efficiency (EQE) of 3.1% are obtained by adding a small amount (0.5% by weight) of TFB into aryl‐F8. Study of charge injection and transport in the single‐carrier devices shows that the addition of a small fraction of hole traps is necessary for charge‐carrier balance. Optical studies using UV–vis and fluorescence spectroscopic measurements, photoluminescence quantum yield, and fluorescence decay time measurements indicate that TFB does not affect the optical properties of the aryl‐F8, which is the emitting material in these devices. Luminance efficiency of up to ≈11 cd A?1 and EQE values of 5.7% are achieved in these structures with the aid of improved out‐coupling using index‐matched hemispheres.  相似文献   

11.
Near‐infrared (NIR) lighting plays an increasingly important role in new facial recognition technologies and eye‐tracking devices, where covert and nonvisible illumination is needed. In particular, mobile or wearable gadgets that employ these technologies require electronic lighting components with ultrathin and flexible form factors that are currently unfulfilled by conventional GaAs‐based diodes. Colloidal quantum dots (QDs) and emerging perovskite light‐emitting diodes (LEDs) may fill this gap, but generally employ restricted heavy metals such as cadmium or lead. Here, a new NIR‐emitting diode based on heavy‐metal‐free In(Zn)As–In(Zn)P–GaP–ZnS quantum dots is reported. The quantum dots are prepared with a giant shell structure, enabled by a continuous injection synthesis approach, and display intense photoluminescence at 850 nm with a high quantum efficiency of 75%. A postsynthetic ligand exchange to a shorter‐chain 1‐mercapto‐6‐hexanol (MCH) affords the QDs with processability in polar solvents as well as an enhanced charge‐transport performance in electronic devices. Using solution‐processing methods, an ITO/ZnO/PEIE/QD/Poly‐TPD/MoO3/Al electroluminescent device is fabricated and a high external quantum efficiency of 4.6% and a maximum radiance of 8.2 W sr?1 m?2 are achieved. This represents a significant leap in performance for NIR devices employing a colloidal III–V semiconductor QD system, and may find significant applications in emerging consumer electronic products.  相似文献   

12.
3‐Cyano‐9‐diarylamino carbazoles have been synthesized. These new compounds emit in the blue to green region. Double‐layer electroluminescent devices using these compounds as the hole‐transport/emitting materials are highly efficient. Two of the compounds can be fabricated into single‐layer devices with good performance. Green‐ and blue‐emitting devices with good performance were also fabricated using one of the compounds as the hole‐injection layer.  相似文献   

13.
研究了结构为ITO/m-MTDATA:x%4F-TCNQ/NPB/TBADN:EBDP:DCJTB/Bphen:Liq/LiF/Al的有机白光电致发光器件(WOLED)。分别在ITO与NPB间加入高迁移率的m-MTDATA:4F-TCNQ来增强器件的空穴注入,在阴极和发光层间加入高迁移率的Bphen:Liq层增强器件的电子注入,降低驱动电压,提高器件效率。同时,由于注入的电子和空穴数量偏离平衡,器件的效率也会受到影响。实验中,通过调节4F-TCNQ的掺杂浓度来调控空穴的注入和传输,使载流子达到高度平衡。器件的最大电流效率和流明效率分别达到了9.3cd/A和4.6 lm/W。  相似文献   

14.
Solar cells, light emitting diodes, and X‐ray detectors based on perovskite materials often incorporate gold electrodes, either in direct or indirect contact with the perovskite compound. Chemical interactions between active layers and contacts deteriorate the operation and induce degradation, being the identification of the chemical nature of such interfacial structures an open question. Chemical reactivity of gold in contact with the perovskite semiconductor leads to reversible formation of oxidized gold halide species and explains the generation of halide vacancies in the vicinity of the interface. Electrical biasing induces contact reaction and produces modifications of the current level by favoring the ability of perovskite/Au interfaces to inject electronic carriers. The current injection increment does not depend on the halogen source used, either extrinsically by iodine vapor sublimation of Au electrodes, or intrinsically by bias‐driven migration of bromide ions. In addition, the formation of a dipole‐like structure at the reacted electrode that lowers the potential barrier for electronic carriers is confirmed. These findings highlight adequate selection of the external contacts and suggest the need for a deeper understanding of contact reactivity as it dominates the operation characteristics, rather than being governed by the bulk transport properties of the charge carriers, either electronic or ionic.  相似文献   

15.
Hole transport materials are critical to the performance of organic light-emitting diodes (OLEDs). While 1,1-bis(di-4-tolylaminophenyl)cyclohexane (TAPC) with a high triplet energy is widely used for high efficiency phosphorescent OLEDs, devices using TAPC as a hole transport layer (HTL) have a short operating lifetime due to the build-up of trapped charges at the TAPC/emitting layer (EML) interface during device operation. In this work, to solve the operating stability problem, instead of using conventional HTLs, we use a(fac-tris(2-phenylpyridine)iridium (III))(Ir(ppy)3) doped layer as an HTL to replace the conventional HTLs. Because of the hole injecting and transporting abilities of the phosphorescent dye, holes can be directly injected into the emitting layer without an injection barrier. OLEDs based on a phosphorescent dye-doped HTL show significant improvement in operational stability without loss of efficiency.  相似文献   

16.
The energy level alignment between organic semiconductors (OSCs) and the respective (metal) electrodes in organic electronic devices is of key importance for efficient charge carrier injection. For many years, researchers have attempted to control this energy level alignment by means of functional self‐assembled monolayers or the insertion of thin injection layers (made, e.g., of doped OCSs or pure dopants). The present work demonstrates an alternative to these approaches, namely the use of phthalocyanine monolayers as contact primers, which are deposited onto noble metal electrodes by means of vacuum deposition. It is shown that polar as well as non‐polar phthalocyanines modify the work functions of clean Au(111) and Ag(111) surfaces as a function of their coverage and thus enable quantitative control of the metal work functions. This behavior is successfully replicated for the respective polycrystalline metal surfaces and it is found that full monolayers can even withstand air exposure when protected by sacrificial multilayers, which are afterward removed by thermal desorption.  相似文献   

17.
This paper reports an analysis of the properties of polymer light‐emitting devices (PLEDs) doped with iridium complexes. Devices based on charged and neutral complexes doped into poly(vinylcarbazole) (PVK) are presented, and the role of the ions and the charge‐transport properties of the complexes are discussed. In devices with the charged complexes, the concentration of the complex is found to have a profound effect on both the switch‐on voltage and the efficiency. At higher doping concentrations the efficiency is increased and the switch‐on voltage decreased. The increase in efficiency and decrease in switch‐on voltage at higher dopant concentration are found to be due to an alternative charge transport path via the iridium dopant [Ir(bpy)]+ (bis(2‐phenylpyridine‐C2,N′)(2,2′‐bipyridine)iridium hexafluorophosphate). However, at lower concentrations the complex becomes an electron trap and the efficiency is reduced. The devices are found to be significantly less efficient than those with neutral complexes. This difference is attributed to the ionic content and the charge trapping properties of the charged complexes. The low efficiency of the charged‐complex‐based devices could be overcome by utilizing a hole‐blocking layer; devices with efficiencies as high as 23 cd A–1 were obtained.  相似文献   

18.
We demonstrate enhanced hole injection and lowered driving voltage in vacuum‐deposited organic light‐emitting diodes (OLEDs) with a hole‐transport layer using the starburst amine 4,4′,4″‐tris(N,N‐diphenyl‐amino)triphenylamine (TDATA) p‐doped with a very strong acceptor, tetrafluoro‐tetracyano‐quinodimethane (F4‐TCNQ) by controlled coevaporation. The doping leads to high conductivity of doped TDATA layers and a high density of equilibrium charge carriers, which facilitates hole injection and transport. Moreover, multilayer OLEDs consisting of double hole‐transport layers of thick p‐doped TDATA and a thin triphenyl‐diamine (TPD) interlayer exhibit very low operating voltages.  相似文献   

19.
Charge carrier injection and transport in polymer light‐emitting diodes (PLEDs) is strongly limited by the energy level offset at organic/(in)organic interfaces and the mismatch in electron and hole mobilities. Herein, these limitations are overcome via electrochemical doping of a light‐emitting polymer. Less than 1 wt% of doping agent is enough to effectively tune charge injection and balance and hence significantly improve PLED performance. For thick single‐layer (1.2 µm) PLEDs, dramatic reductions in current and luminance turn‐on voltages (VJ = 11.6 V from 20.0 V and VL = 12.7 V from 19.8 V with/without doping) accompanied by reduced efficiency roll‐off are observed. For thinner (<100 nm) PLEDs, electrochemical doping removes a thickness dependence on VJ and VL, enabling homogeneous electroluminescence emission in large‐area doped devices. Such efficient charge injection and balance properties achieved in doped PLEDs are attributed to a strong electrochemical interaction between the polymer and the doping agents, which is probed by in situ electric‐field‐dependent Raman spectroscopy combined with further electrical and energetic analysis. This approach to control charge injection and balance in solution‐processed PLEDs by low electrochemical doping provides a simple yet feasible strategy for developing high‐quality and efficient lighting applications that are fully compatible with printing technologies.  相似文献   

20.
Light emitting field-effect transistors (LEFETs) are a class of next generation devices which combine the switching properties of field-effect transistors (FETs) with light emitting capabilities of organic light-emitting diodes (OLEDs) in a single device architecture. Current LEFET architectures suffer from inefficient charge injection of electrons and holes from the source and drain electrodes, leading to unbalanced charge transport and hence poor device performance. Here we report a simple fabrication method for LEFETs that delivers asymmetric source and drain electrodes comprised of low and high work function materials. The interdigitated low and high work function source–drain electrodes consist of combinations of organic materials, salts, metal oxides and metals. Using this method we were able to obtain a maximum EQE of up to 1.2% in a single layer device with Super Yellow as the active material.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号