首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
A so-called ghost dark energy was recently proposed to explain the present acceleration of the universe.The energy density of ghost dark energy,which originates from Veneziano ghost of Quantum Chromodynamics(QCD),in a time dependent background,can be written in the form,ρD=αH + βH~2 where H is the Hubble parameter.We investigate the generalized ghost dark energy(GGDE) model in the setup of loop quantum Cosmology(LQC) and Galileon Cosmology.We study the cosmological implications of the models.We also obtain the equation of state and the deceleration parameters and differential equations governing the evolution of this dark energy model for LQC and Galileon Cosmology.  相似文献   

2.
In this paper, we study interacting extended Chaplygin gas as dark matter and quintessence scalar field as dark energy with an effective Λ-term in Lyra manifold. As we know Chaplygin gas behaves as dark matter at the early universe while cosmological constant at the late time. Modified field equations are given and motivation of the phenomenological models discussed in details. Four different models based on the interaction term are investigated in this work. Then, we consider other models where Extended Chaplygin gas and quintessence field play role of dark matter and dark energy respectively with two different forms of interaction between the extended Chaplygin gas and quintessence scalar field for both constant and varying Λ. Concerning to the mathematical hardness of the problems we discuss results numerically and graphically. Obtained results give us hope that proposed models can work as good models for the early universe with later stage of evolution containing accelerated expansion.  相似文献   

3.
Observational evidence seems to indicate that the expansion of the universe is currently accelerating. Such an acceleration strongly suggests that the content of the universe is dominated by a non-clustered form of matter, the so-called dark energy. The cosmological constant, introduced by Einstein to reconcile General Relativity with a closed and static Universe, is the most likely candidate for dark energy although other options such as a weakly interacting field, also known as quintessence, have been proposed. The fact that the dark energy density is some one hundred and twenty orders of magnitude lower than the energy scales present in the early universe constitutes the cosmological constant problem. We review various aspects of the cosmological constant problem and some interesting scenarios using supersymmetry or extra-dimensions attempting to solve one of the most puzzling issues in physics.  相似文献   

4.
In this paper we study the cosmological evolution of the holographic dark energy in a cyclic universe, generalizing the model of holographic dark energy proposed by Li. The holographic dark energy with c<1 can realize a quintom behavior; namely, it evolves from a quintessence-like component to a phantom-like one. The holographic phantom energy density grows rapidly and dominates the late-time expanding phase, helping to realize a cyclic universe scenario in which the high energy regime is modified by the effects of quantum gravity, causing a turn-around (and a bounce) of the universe. The dynamical evolution of holographic dark energy in the regimes of low energy and high energy is governed by two differential equations, respectively. It is of importance to link the two regimes for this scenario. We propose a link condition giving rise to a complete picture of holographic evolution of a cyclic universe.  相似文献   

5.
In this article we describe a model of the universe consisting of a mixture of the ordinary matter and a so-called cosmic quaternionic field. The basic idea here consists in an attempt to interpret as the energy density of the quaternionic field whose source is any form of energy including the proper energy density of this field. We set the energy density of this field to and show that the ratio of ordinary dark matter energy density assigned to is constant during the cosmic evolution. We investigate the interaction of the quaternionic field with the ordinary dark matter and show that this field exerts a force on the moving dark matter which might possible create the dark matter in the early universe. Such determined fulfils the requirements asked from the dark energy. In this model of the universe, the cosmological constant, the fine-tuning and the age problems might be solved. Finally, we sketch the evolution of the universe with the cosmic quaternionic field and show that the energy density of the cosmic quaternionic field might be a possible candidate for the dark energy.  相似文献   

6.
Inspired by Verlinde’s idea,some modified versions of entropic gravity have been suggested.Extending them in a unified formalism,herein we derive the generalized gravitational equations accordingly.From gravitational equations,the energy-momentum conservation law and cosmological equations are investigated.The covariant conservation law of energy-momentum tensor severely constrains viable modifications of entropic gravity.A discrepancy arises when two independent methods are applied to the homogeneous isotropic universe,posing a serious challenge to modified models of entropic gravity.  相似文献   

7.
第五讲暗能量和德西特时空   总被引:1,自引:0,他引:1  
蔡荣根 《物理》2005,34(8):555-564
最近的天文观测表明,宇宙是在加速膨胀,而不是原来认为的减速膨胀.为解释加速膨胀,必须在宇宙的物质能量中引入暗能量这一成分,文章讨论了暗能量的可能侯选者,特别强调了宇宙常数问题、德西特时空问题以及和德西特时空相关的一些基本问题.  相似文献   

8.
We investigate a class of cosmological solutions of Einstein’s field equations in higher dimensions with a cosmological constant and an ideal fluid matter distribution as a source. We discuss the dynamical evolution of the universe subject to two constraints that (i) the total volume scale factor of the universe is constant and (ii) the effective energy density is constant. We obtain various interesting new dynamics for the external space that yield a time varying deceleration parameter including oscillating cases when the flat/curved external and curved/flat internal spaces are considered. We also comment on how the universe would be conceived by an observer in four dimensions who is unaware of the extra dimensions.  相似文献   

9.
We consider the new agegraphic model of dark energy with a varying gravitational constant, G, in a non-flat universe. We obtain the equation of state and the deceleration parameters for both interacting and noninteracting new agegraphic dark energy. We also present the equation of motion determining the evolution behavior of the dark energy density with a time variable gravitational constant. Finally, we generalize our study to the case of viscous new agegraphic dark energy in the presence of an interaction term between both dark components.  相似文献   

10.
11.
The existence of current–time universe’s acceleration is usually modeled by means of two main strategies. The first makes use of a dark energy barotropic fluid entering by hand the energy–momentum tensor of Einstein’s theory. The second lies on extending the Hilbert–Einstein action giving rise to the class of extended theories of gravity. In this work, we propose a third approach, derived as an intrinsic geometrical effect of space–time, which provides repulsive regions under certain circumstances. We demonstrate that the effects of repulsive gravity naturally emerge in the field of a homogeneous and isotropic universe. To this end, we use an invariant definition of repulsive gravity based upon the behavior of the curvature eigenvalues. Moreover, we show that repulsive gravity counterbalances the standard gravitational attraction influencing both late and early times of the universe evolution. This phenomenon leads to the present speed up and to the fast expansion due to the inflationary epoch. In so doing, we are able to unify both dark energy and inflation in a single scheme, showing that the universe changes its dynamics when \({\ddot{H}\over H}=-2 \dot{H}\), at the repulsion onset time where this condition is satisfied. Further, we argue that the spatial scalar curvature can be taken as vanishing because it does not affect at all the emergence of repulsive gravity. We check the goodness of our approach through two cosmological fits involving the most recent union 2.1 supernova compilation.  相似文献   

12.
A diverse set of observations now compellingly suggest that the universe possesses a nonzero cosmological constant. In the context of quantum-field theory a cosmological constant corresponds to the energy density of the vacuum, and the favored value for the cosmological constant corresponds to a very tiny vacuum energy density. We discuss future observational tests for a cosmological constant as well as the fundamental theoretical challenges — and opportunities — that this poses for particle physics and for extending our understanding of the evolution of the universe back to the earliest moments.This essay received the fifth award from the Gravity Research Foundation, 1995-Ed.  相似文献   

13.
Supersymmetron     
We consider a supersymmetric model of dark energy coupled to cold dark matter: the supersymmetron. In the absence of cold dark matter, the supersymmetron converges to a supersymmetric minimum with a vanishing cosmological constant. When cold dark matter is present, the supersymmetron evolves to a matter dependent minimum where its energy density does not vanish. In the early Universe until the recent past of the Universe, the energy density of the supersymmetron is negligible compared to the cold dark matter energy density. Away from the supersymmetric minimum, the equation of state of the supersymmetron is constant and negative. When the supersymmetron reaches the neighbourhood of the supersymmetric minimum, its equation of state vanishes rapidly. This leads to an acceleration of the Universe which is transient unless supersymmetry breaking induces a pure cosmological constant and acceleration of the Universe does not end. Moreover, we find that the mass of supersymmetron is always greater than the gravitino mass. As a result, the supersymmetron generates a short ranged fifth force which evades gravitational tests. On the other hand, we find that the supersymmetron may lead to relevant effects on large scale structures.  相似文献   

14.
In this study, we have investigated the dynamics of non-static Gödel type rotating universe with massive scalar field, viscous fluid and heat flow in the presence of cosmological constant. For various cosmic matter forms, the behavior of the cosmological constant (Λ), shear (η) and bulk (ξ) viscosity coefficients and other kinematic quantities have studied in the early universe. We have showed the decay of massive scalar field in the non-static rotating Gödel type universe and we have obtained constant scalar field with and without source density. Also, we have investigated the effects of massive scalar field on the matter density and pressure. From solutions of the field equations, we have a cosmological model with non-zero expansion, shear, heat flux and rotation. Also some physical and geometrical aspects of the model discussed.  相似文献   

15.
In the present work a study is given for the evolution of a flat, isotropic and homogeneous Universe, which is filled with a causal bulk viscous cosmological fluid. We describe the viscous properties by an ultra‐relativistic equation of state, and bulk viscosity coefficient obtained from recent lattice QCD calculations. The basic equation for the Hubble parameter is derived by using the energy equation obtained from the assumption of the covariant conservation of the energy‐momentum tensor of the matter in the Universe. By assuming a power law dependence of the bulk viscosity coefficient, temperature and relaxation time on the energy density, we derive the evolution equation for the Hubble function. By using the equations of state from recent lattice QCD simulations and heavy‐ion collisions we obtain an approximate solution of the field equations. In this treatment for the viscous cosmology, no evidence for singularity is observed. For example, both the Hubble parameter and the scale factor are finite at t = 0, where t is the comoving time. Furthermore, their time evolution essentially differs from the one associated with non‐viscous and ideal gas. Also it is noticed that the thermodynamic quantities, like temperature, energy density and bulk pressure remain finite. Particular solutions are also considered in order to prove that the free parameter in this model does qualitatively influence the final results.  相似文献   

16.
In this paper we examine the evolution of cosmic density parameters in a four‐dimensional space‐time embedded in a five‐dimensional bulk space. We show that the extrinsic curvature is an independent spin‐2 field governed by the Gupta equations. Without evoking a dark energy fluid, the corresponding cosmological model is compared with the phenomenological XCDM model and shows a good concordance with recent cosmological datasets from Planck Collaboration and the latest Baryons Acoustic Oscillations/Cosmic Microwave Background (BAO/CMBR) + SNIa studying the evolution of density parameters. In addition, a discussion on the coincidence problem is also proposed.  相似文献   

17.
The role that the auxiliary scalar field φ plays in Brans–Dicke cosmology is discussed. If a constant vacuum energy is assumed to be the origin of dark energy, then the corresponding density parameter would be a quantity varying with φ; and almost all of the fundamental components of our universe can be unified into the dynamical equation for φ. As a generalization of Brans–Dicke theory, we propose a new gravity theory with a complex scalar field ϕ which is coupled to the cosmological curvature scalar. Through such a coupling, the Higgs mechanism is naturally incorporated into the evolution of the universe, and a running density of the field vacuum energy is obtained which may release the particle standard model from the rigorous cosmological constant problem in some sense. Our model predicts a running mass scale of the fundamental particles in which the gauge symmetry breaks spontaneously. The running speed of the mass scale in our case could survive all existing experiments.  相似文献   

18.
The constraint on the total energy in a given spatial region is given from holography by the mass of a black hole that just fits in that region, which leads to an UV/IR relation: the maximal energy density in that region is proportional to Mp^2/L^2, where Mp is the Planck mass and L is the spatial scale of that region under consideration. Assuming the maximal black hole in the universe is formed through gravitational collapse of perturbations in the universe, then the "Jeans" scale of the perturbations gives a causal connection scale RCC. For gravitational perturbations, RCC^-2= Max (H+ 2H^2, -H) for a fiat universe. We study the cosmological dynamics of the corresponding vacuum energy density by choosing the causal connection scale as the IR cutoff in the UV/IR relation, in the cases of the vacuum energy density as an independently conserved energy component and an effective dynamical cosmological constant, respectively. It turns out that only the case with the choice RCC^-2 = H+ 2H^2, could be consistent with the current cosmological observations when the vacuum density appears as an independently conserved energy component. In this case, the model is called holographic Ricci scalar dark energy model in the literature.  相似文献   

19.
Considering our expanding universe as made up of gravitationally interacting particles which describe particles of luminous matter, dark matter and dark energy which is represented by a repulsive harmonic potential among the points in the flat 3-space and incorporating Mach’s principle into our theory, we derive a quantum mechanical relation connecting, temperature of the cosmic microwave background radiation, age, and cosmological constant of the universe. When the cosmological constant is zero, we get back Gamow’s relation with a much better coefficient. Otherwise, our theory predicts a value of the cosmological constant 2.0×10−56 cm−2 when the present values of cosmic microwave background temperature of 2.728 K and age of the universe 14 billion years are taken as input.  相似文献   

20.
It is shown that when the Minkowski metric is approached by a limiting process using two different static, spherically-symmetric, closed cosmological models, that although the energy-stress tensors for the Einstein-Friedmann field equations vanishes, their integral does not. Since part of this integral consists of the mass of the incoherent dust background, which is the same in both models, the Minkowski metric obtained by this limiting process cannot be regarded as anti-Machian, since there is an infinite amount of ponderable matter in the background, albeit at vanishing density. One of the models is the Einstein static universe with its cosmological term. The other model does not employ this term, but instead uses a tensor that has vanishing trace, negative energy density and negative pressure. Gravitational energy is also studied, and it is pointed out that for both models, this energy becomes infinitely negative in the Minkowski limit.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号