首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
We present high-time-resolution multicolour observations of the quiescent soft X-ray transient V404 Cyg obtained with ULTRACAM. Superimposed on the ellipsoidal modulation of the secondary star are large flares on time-scales of a few hours, as well as several distinct rapid flares on time-scales of tens of minutes. The rapid flares, most of which show further variability and unresolved peaks, cover shorter time-scales than those reported in previous observations. The power density spectrum of the 5-s time-resolution data shows a quasi-periodic oscillation (QPO) feature at 0.78 mHz (=21.5 min). Assuming this periodicity represents the Keplerian period at the transition between the thin and advective disc regions, we determine the transition radius. We discuss the possible origins for the QPO feature in the context of the advection-dominated accretion flow model.
We determine the colour of the large flares and find that the i '-band flux per unit frequency interval is larger than that in the g ' band. The colour is consistent with optically thin gas with a temperature of ∼8000 K arising from a region with an equivalent blackbody radius of at least  2 R  , which covers 3 per cent of the surface of the accretion disc. Our timing and spectral analysis results support the idea that the rapid flares (i.e. the QPO feature) most likely arise from regions near the transition radius.  相似文献   

2.
We present X-ray/ γ -ray spectra of Cyg X-1 observed during the transition from the hard to the soft state and in the soft state by ASCA , RXTE and CGRO /OSSE in 1996 May and June. The spectra consist of a dominant soft component below ∼2 keV and a power-law-like continuum extending to at least ∼800 keV. We interpret them as emission from an optically thick, cold accretion disc and from an optically thin, non-thermal corona above the disc. A fraction f ≳0.5 of total available power is dissipated in the corona.
We model the soft component by multicolour blackbody disc emission taking into account the torque-free inner-boundary condition. If the disc extends down to the minimum stable orbit, the ASCA RXTE data yield the most probable black hole mass of M X≈10 M and an accretion rate,     , locating Cyg X-1 in the soft state in the upper part of the stable, gas-pressure-dominated, accretion-disc solution branch.
The spectrum of the corona is well modelled by repeated Compton scattering of seed photons from the disc off electrons with a hybrid, thermal/non-thermal distribution. The electron distribution can be characterized by a Maxwellian with an equilibrium temperature of kT e∼30–50 keV, a Thomson optical depth of τ ∼0.3 and a quasi-power-law tail. The compactness of the corona is 2≲ℓh≲7, and a presence of a significant population of electron–positron pairs is ruled out.
We find strong signatures of Compton reflection from a cold and ionized medium, presumably an accretion disc, with an apparent reflector solid angle, Ω/2π∼0.5–0.7. The reflected continuum is accompanied by a broad iron K α line.  相似文献   

3.
We present a detailed classification of the X-ray states of Cyg X-3 based on the spectral shape and a new classification of the radio states based on the long-term correlated behaviour of the radio and soft X-ray light curves. We find a sequence of correlations, starting with a positive correlation between the radio and soft X-ray fluxes in the hard spectral state, changing to a negative one at the transition to soft spectral states. The temporal evolution can be in either direction on that sequence, unless the source goes into a very weak radio state, from which it can return only following a major radio flare. The flare decline is via relatively bright radio states, which results in a hysteresis loop on the flux–flux diagram. We also study the hard X-ray light curve, and find its overall anticorrelation with the soft X-rays. During major radio flares, the radio flux responds exponentially to the level of a hard X-ray high-energy tail. We also specify the detailed correspondence between the radio states and the X-ray spectral states. We compare our results to those of black hole and neutron star binaries. Except for the effect of strong absorption and the energy of the high-energy break in the hard state, the X-ray spectral states of Cyg X-3 closely correspond to the canonical X-ray states of black hole binaries. Also, the radio/X-ray correlation closely corresponds to that found in black hole binaries, but it significantly differs from that in neutron star binaries. Overall, our results strongly support the presence of a black hole in Cyg X-3.  相似文献   

4.
We present simultaneous X-ray ( RXTE ) and optical (ULTRACAM) narrow-band (Bowen blend/He  ii and nearby continuum) observations of Sco X-1 at 2–10 Hz time resolution. We find that the Bowen/He  ii emission lags the X-ray light curves with a light traveltime of     s which is consistent with reprocessing in the companion star. The echo from the donor is detected at orbital phase ∼0.5 when Sco X-1 is at the top of the flaring branch (FB). Evidence of echoes is also seen at the bottom of the FB but with time-lags of 5–10 s which are consistent with reprocessing in an accretion disc with a radial temperature profile. We discuss the implication of our results for the orbital parameters of Sco X-1.  相似文献   

5.
We study the radiation-driven warping of accretion discs in the context of X-ray binaries. The latest evolutionary equations are adopted, which extend the classical alpha theory to time-dependent thin discs with non-linear warps. We also develop accurate, analytical expressions for the tidal torque and the radiation torque, including self-shadowing.
We investigate the possible non-linear dynamics of the system within the framework of bifurcation theory. First, we re-examine the stability of an initially flat disc to the Pringle instability. Then we compute directly the branches of non-linear solutions representing steadily precessing discs. Finally, we determine the stability of the non-linear solutions. Each problem involves only ordinary differential equations, allowing a rapid, accurate and well-resolved solution.
We find that radiation-driven warping is probably not a common occurrence in low-mass X-ray binaries. We also find that stable, steadily precessing discs exist for a narrow range of parameters close to the stability limit. This could explain why so few systems show clear, repeatable 'superorbital' variations. The best examples of such systems, Her X-1, SS 433 and LMC X-4, all lie close to the stability limit for a reasonable choice of parameters. Systems far from the stability limit, including Cyg X-2, Cen X-3 and SMC X-1, probably experience quasi-periodic or chaotic variability as first noticed recently by Wijers and Pringle. We show that radiation-driven warping provides a coherent and persuasive framework but that it does not provide a generic explanation for the long-term variabilities in all X-ray binaries.  相似文献   

6.
It is shown that the energy dependence of the time-lags in Cygnus X-1 excludes any significant contribution of the standard reflected component to the observed lags. The conclusion is valid in the     frequency range where time-lags have been detected with sufficient significance. In fact, the data hint that the reflected component is working in the opposite direction, reducing the lags at energies where the contribution of the reflected component is significant.
We argue that the observed logarithmic dependence of time-lags on energy could be due to the small variations of the spectral index in the frame of a very simple phenomenological model. We assume that an optically thin flow/corona, emitting a power law like spectrum, is present at a range of distances from the compact object. The slope of the locally emitted spectrum is a function of distance, with the hardest spectrum emitted in the innermost region. If perturbations with different time-scales are introduced to the accretion flow at different radii, then X-ray lags naturally appear, caused by the inward propagation of perturbations on the diffusion time-scales.  相似文献   

7.
The dwarf nova oscillations observed in cataclysmic variable (CV) stars are interpreted in the context of a low-inertia accretor model, in which accretion on to an equatorial belt of the white dwarf primary causes the belt to vary its angular velocity. The rapid deceleration phase is attributed to propellering. Evidence that temporary expulsion rather than accretion of gas occurs during this phase is obtained from the large drop in extreme ultraviolet flux.
We show that the quasi-periodic oscillations are most probably caused by a vertical thickening of the disc, moving as a travelling wave near the inner edge of the disc. This alternately obscures and 'reflects' radiation from the central source, and is visible even in quite low inclination systems. A possible excitation mechanism, caused by winding up and reconnection of magnetic field lines, is proposed.
We apply the model, deduced largely from VW Hyi observations, to re-interpret observations of SS Cyg, OY Car, UX UMa, V2051 Oph, V436 Cen and WZ Sge. In the last of these we demonstrate the existence of a 742-s period in the light curve, arising from obscuration by the travelling wave, and hence show that the two principal oscillations are a dwarf nova oscillation and its reprocessed companion.  相似文献   

8.
We present the results obtained by a detailed study of the extragalactic Z source LMC X-2, using broad-band Suzaku data and a large (∼750 ks) data set obtained with the proportional counter array (PCA) onboard the Rossi X-ray Timing Experiment ( RXTE ). The PCA data allow the study of the complete spectral evolution along the horizontal, normal and flaring branches of the Z track. Comparison with previous studies shows that the details of spectral evolution (like the variation of Comptonizing electron temperature) are similar to those of GX 17+2 but unlike those of Cyg X-2 and GX 349+2. This suggests that Z sources are a heterogeneous group, with perhaps LMC X-2 and GX 17+2 being members of a subclass. However, non-monotonic evolution of the Compton y parameter seems to be generic to all sources. The broad-band Suzaku data reveal that the case in which the additional soft component of the source is modelled as disc blackbody emission is strongly preferred over the one where it is taken to be a blackbody spectrum. This component, as well as the temperature of seed photons, does not vary when the source goes into flaring mode, and the entire variation can be ascribed to the Comptonizing cloud. The bolometric unabsorbed luminosity of the source is constrained to be  ∼2.23 × 1038 erg s−1  , which, if the source is Eddington-limited, implies a neutron star mass of  1.6 M  . We discuss the implications of these results.  相似文献   

9.
The black hole candidate Cyg X-1 was observed in ultra low state on march 30, 1997 using Large Area Scintillation counter Experiment (LASE) in the hard X-ray energy region of 20–180 keV. During the 30 minute exposure a combined signal of 68 sigma was obtained, however, the measured flux at 50 keV was lower by a factor of 2 than the minimum flux reported so far. Using the recent orbital ephemeris of the source, our snap-shot observations were made at ϕ5.6 = 0.915, which corresponds to the binary minimum revealed by the ASM light curves. The daily average data from the BATSE detectors give the source intensity level to be higher by a factor of 5. Very low flux values measured in the present experiment suggest that the hard X-ray source may have been partially occulted by the primary companion during its transit near the X-ray minimum.  相似文献   

10.
We present simultaneous dual-frequency radio observations of Cygnus X-3 during a phase of low-level activity. We constrain the minimum variability time-scale to be 20 min at 43 GHz and 30 min at 15 GHz, implying source sizes of 2–4 au. We detect polarized emission at a level of a few per cent at 43 GHz which varies with the total intensity. The delay of ∼10 min between the peaks of the flares at the two frequencies is seen to decrease with time, and we find that synchrotron self-absorption and free–free absorption by entrained thermal material play a larger role in determining the opacity than absorption in the stellar wind of the companion. A shock-in-jet model gives a good fit to the light curves at all frequencies, demonstrating that this mechanism, which has previously been used to explain the brighter, longer lived giant outbursts in this source, is also applicable to these low-level flaring events. Assembling the data from outbursts spanning over two orders of magnitude in flux density shows evidence for a strong correlation between the peak brightness of an event, and the time-scale and frequency at which this is attained. Brighter flares evolve on longer time-scales and peak at lower frequencies. Analysis of the fitted model parameters suggests that brighter outbursts are due to shocks forming further downstream in the jet, with an increased electron normalization and magnetic field strength both playing a role in setting the strength of the outburst.  相似文献   

11.
We report on several pointed Rossi X-ray Timing Explorer observations of the enigmatic low-mass X-ray binary (LMXB) 4U 1957+11 at different X-ray luminosities. The luminosity of the source varied by more than a factor of 4 on time-scales of months to years. The spectrum of the source tends to become harder when its luminosity increases. Only very weak  (1–2  per cent rms amplitude,  0.001–10 Hz  ,  2–60 keV)  rapid X-ray variability was observed during the observations. A comparison of the spectral and temporal behaviour of 4U 1957+11 with other X-ray binary systems, in particular LMC X-3, indicates that 4U 1957+11 is likely to be a persistent LMXB harbouring a black hole and it is persistently in the black hole high state. If confirmed, it would be the only such system known.  相似文献   

12.
We present the results of a study with the Swift Burst Alert Telescope in the 14–195 keV range of the long-term variability of five low-mass X-ray binaries with reported or suspected superorbital periods – 4U 1636−536, 4U 1820−303, 4U 1916−053, Cyg X-2 and Sco X-1. No significant persistent periodic modulation was detected around the previously reported periods in the 4U 1916−053, Cyg X-2 or Sco X-1 light curves. The ∼170-d period of 4U 1820−303 was detected up to 24 keV, consistent with variable accretion due to the previously proposed triple system model. The ∼46-d period in 4U 1636−536 was detected up to 100 keV, with the modulation in the low- and high-energy bands found to be phase shifted by ∼180° with respect to each other. This phase shift, when taken together with the near-coincident onset of the ∼46-d modulation and the low/hard X-ray state, leads us to speculate that the modulation could herald transient jet formation.  相似文献   

13.
We have performed simultaneous X-ray and radio observations of 13 Galactic Centre low-mass X-ray binaries in 1998 April using the Wide Field Cameras on board BeppoSAX and the Australia Telescope Compact Array, the latter simultaneously at 4.8 and 8.64 GHz. We detect two Z sources, GX 17+2 and GX 5−1, and the unusual 'hybrid' source GX 13+1. Upper limits, which are significantly deeper than previous non-detections, are placed on the radio emission from two more Z sources and seven atoll sources. Hardness–intensity diagrams constructed from the Wide Field Camera data reveal GX 17+2 and GX 5−1 to have been on the lower part of the horizontal branch and/or the upper part of the normal branch at the time of the observations, and the two non-detected Z sources, GX 340+0 and GX 349+2, to have been on the lower part of the normal branch. This is consistent with the previous empirically determined relation between radio and X-ray emission from Z sources, in which radio emission is strongest on the horizontal branch and weakest on the flaring branch. For the first time we have information on the X-ray state of atoll sources, which are clearly radio-quiet relative to the Z sources, during periods of observed radio upper limits. We place limits on the linear polarization from the three detected sources, and use accurate radio astrometry of GX 17+2 to confirm that it is probably not associated with the optical star NP Ser. Additionally we place strong upper limits on the radio emission from the X-ray binary 2S 0921−630, disagreeing with suggestions that it is a Z-source viewed edge-on.  相似文献   

14.
We present a previously unpublished ROSAT Wide Field Camera observation of the transient source RE J1255+266 made just 4 d before the discovery observations. The source is not detected, limiting the duration of the outburst to be less than expected for a superoutburst of a WZ Sge system.
We also present a marginal detection of X-ray emission from RE J1255+266 using ASCA . The most probable luminosity is 6×1029 erg s−1, which is very similar to WZ Sge itself.
We discuss the nature of the source in the light of these observations, and conclude that it is most probably a WZ Sge system, but that the observed outburst must have been a normal dwarf nova outburst.  相似文献   

15.
We have observed a number of minor radio flares in Cyg X-3 using the MERLIN array. Photometric observations show the system to be highly active with multiple flares on hourly time-scales over the one month observing programme. Analysis of the power spectrum of the source show no persistent periodicities in these data, and no evidence of the 4.8-h orbital period. An upper limit of 15 mJy can be placed on the amplitude of any sinusoidal variation of source flux at the orbital period. The brightness temperature of a flare is typically T b≥109–1010 K , with a number of small flares of 5-min duration having brightness temperatures of T b≥ few×1011 K . For such a change in flux to occur within a typical 10-min time-scale, the radiation must originate from plasmons with a size ≤1.22 au. This emission is unlikely to originate close to the centre of the system as both the jets and compact object are buried deep within an optically thick stellar wind. Assuming a spherically symmetric wind, plasmons would become visible at distances ∼13 au from the core.  相似文献   

16.
We present the results of a systematic investigation of spectral evolution in the Z source GX 349+2, using data obtained during 1998 with the Proportional Counter Array (PCA) on-board the RXTE satellite. The source traced a extended normal branch (NB) and flaring branch (FB) in the colour–colour diagram (CD) and the hardness-intensity diagram (HID) during these observations. The spectra at different positions of the Z-track were best fitted by a model consisting of a disc blackbody and a Comptonized spectrum. A broad (Gaussian) iron line at ∼6.7 keV is also required to improve the fit. The spectral parameters showed a systematic and significant variation with the position along the Z-track. The evolution in spectral parameters is discussed in view of the increasing mass accretion rate scenario, proposed to explain the motion of Z sources in the CD and the HID.  相似文献   

17.
Using RXTE /PCA data, we study the fast variability of the reflected emission in the soft spectral state of Cyg X-1 by means of Fourier frequency-resolved spectroscopy. We find that the rms amplitude of variations of the reflected emission has the same frequency dependence as the primary radiation down to time-scales of ≲30–50 ms. This might indicate that the reflected flux reproduces, with nearly flat response, variations of the primary emission. Such behaviour differs notably from that of the hard spectral state, in which variations of the reflected flux are significantly suppressed in comparison with the primary emission, on time-scales shorter than ∼0.5–1 s.
If related to the finite light-crossing time of the reflector, these results suggest that the characteristic size of the reflector, presumably an optically thick accretion disc, in the hard spectral state is larger by a factor of ≳5–10 than in the soft spectral state. Modelling the transfer function of the disc, we estimate the inner radius of the accretion disc to be R in∼100 R g in the hard state and R in≲10 R g in the soft state for a 10-M black hole.  相似文献   

18.
Among the variability behaviours exhibited by neutron star systems are the so-called 'horizontal branch oscillations' (HBO, with frequencies ≈50 Hz), the 'lower-frequency kHz quasi-periodic oscillation' (QPO) and the 'upper-frequency kHz QPO', with the latter two features being separated in frequency by an amount comparable to, but varying slightly from, the suspected spin-frequency of the neutron star. Recently, Psaltis, Belloni & van der Klis have suggested that there exists a correlation between these three frequencies that, when certain identifications of variability features are made, even encompasses black hole sources. We consider this hypothesis by reanalysing a set of GX 339−4 observations. The power spectral density (PSD) constructed from a composite of seven separate, but very similar, observations shows evidence for three broad peaks in the PSD. If the peak frequencies of these features are identified with QPO, then their frequencies approximately fit the correlations suggested by Psaltis, Belloni, & van der Klis. We also reanalyse a Cyg X-1 observation and show that the suggested QPO correlation may also hold, but that complications arise when the QPOs (which, in reality, are fairly broad features) are considered as a function of energy band. These fits suggest the existence of at least three separate, independent physical processes in the accretion flow, a hypothesis that is also supported by consideration of the Fourier frequency-dependent time lags and coherence function between variability in different energy bands. If these variability features have a common origin in neutron star and black hole systems, then 'beat frequency models' of kHz QPO in neutron star systems are called into question.  相似文献   

19.
We investigate how the presence of a non-thermal tail beyond a Maxwellian electron distribution affects the synchrotron process as well as Comptonization in plasmas with parameters typical for accretion flows on to black holes. We find that the presence of the tail can significantly increase the net (after accounting for self-absorption) cyclo-synchrotron emission of the plasma, which then provides seed photons for Compton upscattering. Thus, the luminosity in the thermally Comptonized spectrum is enhanced as well. The importance of these effects increases with both increasing Eddington ratio and black hole mass. The enhancement of the Comptonized synchrotron luminosity can be as large as ∼103 and ∼105 for stellar and supermassive black holes, respectively, when the energy content in the non-thermal tail is 1 per cent.
The presence of the tail only weakly hardens the thermal Comptonization spectrum but it leads to the formation of a high-energy tail beyond the thermal cut-off, which two effects are independent of the nature of the seed photons. Since observations of high-energy tails in Comptonization spectra can constrain the non-thermal tails in the electron distribution and thus the Comptonized synchrotron luminosity, they provide upper limits on the strength of magnetic fields in accretion flows. In particular, the measurement of an MeV tail in the hard state of Cyg X-1 by McConnell et al. implies the magnetic field strength in this source to be at most an order of magnitude below equipartition.  相似文献   

20.
The Galactic radio-emitting X-ray binary Cygnus X-3 is known to be a source of large-scale radio jets associated with periods of intense radio flaring. These jets have been found to have an expansion velocity of ∼0.3 c and are believed (on kinematic grounds) to lie close to the plane of the sky. We present new observations of Cygnus X-3 using the VLBA at 15 GHz. These observations, which included the detection of two small flares, show an additional kind of behaviour with apparent superluminal expansion along both major and minor axes. Evidence for superluminal activity has been found in a number of X-ray binary systems such as GRS 1915+105 and GRO J1655−40 with their superluminal radio jets. Apparently similar morphologies of the Galactic and extragalactic jet sources have led to the X-ray binaries being described as 'micro-quasars'. The superluminal expansion seen in our results appears to be different in nature from these other two sources, and a number of mechanisms are presented and discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号