首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 625 毫秒
1.
王昆鹏  王郢  徐建飞  陈廷军  谢伟  姜敏 《钢铁》2022,57(6):42-49
 研究了轴承钢LF精炼和RH真空处理过程各类夹杂物的成分、种类和数量变化,并结合热力学模拟计算了夹杂物与钢液的界面参数,并对试验结果进行分析讨论。夹杂物分析结果表明,精炼25 min后,脱氧产物Al2O3消失,钢中夹杂物以纯尖晶石、含少量CaO的尖晶石、CaO·2Al2O3和CaO·Al2O3为主。继续精炼65 min至LF精炼结束,钢中夹杂物仍以纯尖晶石、含少量CaO的尖晶石、CaO·2Al2O3和CaO·Al2O3为主。RH真空处理25 min后,钢中夹杂物总数量较LF精炼结束降低75%,其中,纯尖晶石和含少量CaO的尖晶石去除率分别为99.5%和93.2%,CaO·2Al2O3去除率为67%。RH破空后钢中夹杂物以液态钙铝酸盐CaO·Al2O3和12CaO·7Al2O3为主。精炼过程尖晶石类夹杂物尺寸集中在10 μm以下,尺寸大于20 μm夹杂物主要为处于液相区的钙铝酸盐,这些钙铝酸盐在LF精炼前期就已经存在。与钢水接触角大于90°的固态夹杂物纯尖晶石、含少量CaO的尖晶石和CaO·2Al2O3在RH真空处理过程容易去除,与钢水接触角小于90°的液态夹杂物CaO·Al2O3和12CaO·7Al2O3不易去除。因此,将LF精炼结束的夹杂物控制为固态夹杂物有利于RH真空处理过程夹杂物的高效去除。热力学计算结果表明,当钢中w(T[O])为0.001 0%、w([Mg])大于0.000 18%时,脱氧产物Al2O3热力学上就不能稳定存在。铝脱氧、高碱度渣精炼条件下很难稳定地获得固态Al2O3夹杂物。为获得完全固态尖晶石或高熔点钙铝酸盐夹杂物,钢中w([Ca])需控制在0.000 1%以内。钢中w([Ca])大于0.000 2%,就具备生成液态夹杂物的热力学条件。  相似文献   

2.
为了研究GCr15轴承钢浇铸过程MgO·Al2O3夹杂物形成原因,以改善钢的可浇性,对LF结束、RH结束、中间包冲击区、中间包浇铸区进行夹杂物全流程分析。LF结束夹杂物主要为镁铝尖晶石,并含有少量钙铝酸盐夹杂物。RH真空处理后镁铝尖晶石夹杂物被高效化去除,钢液中仅剩少量低熔点和高熔点钙铝酸盐夹杂物,中间包浇铸时可以在钢液中检测到许多MgO·Al2O3夹杂物。采用不含氧化镁的中间包覆盖剂和铝质中间包内衬,在不改变连铸其他工艺参数条件下,中间包MgO·Al2O3夹杂物数量并没有得到显著降低,中间包钢液中仍然可以检测到许多MgO·Al2O3夹杂物,这说明中间包钢-渣-耐火材料间的反应并不是MgO·Al2O3夹杂物的生成原因。向铁质提桶取样器中加入成分以SiO2、Cr2O3、Fe2O  相似文献   

3.
针对国内某钢厂采用EAF→LF→VD→CC流程生产的SAE8620RH齿轮钢中夹杂物,通过SEM-EDS和热力学计算研究了夹杂物的形成机理和演变规律。结果表明,钢中的复合夹杂物主要是以MgO·Al2O3为核心外部包裹CaS的复合形式存在。LF精炼初期夹杂物主要为MgO·Al2O3,外部包裹有少量的CaS;经过钙处理后,部分MgO·Al2O3被改性为液态钙铝酸盐;经VD真空处理后,MgO·Al2O3外部包裹的CaS比例明显增加;铸坯中MgO·Al2O3外部重新析出MnS,形成MgO·Al2O3-(Ca, Mn)S。当钢液中的w(Al)=0.03%时,w(Mg)=1.85×10-6就可以生成MgO·Al2O3。在LF精炼初期,CaS主要是[S]和[Ca]直接反应生成...  相似文献   

4.
王郢  王昆鹏  陈廷军  徐建飞  赵阳 《炼钢》2022,(3):58-61+84
对“90 t EAF→LF→VD→CC”流程生产轴承钢的全流程夹杂物进行了研究。结果表明,LF精炼结束以CaO-Al2O3-CaS和Al2O3·MgO尖晶石为主;VD真空处理后,Al2O3·MgO尖晶石几乎全部消失,钢中夹杂物以液态钙铝酸盐为主,T.O质量分数由精炼结束的8.6×10-6降低至破空的4.3×10-6,并且夹杂物的去除率达65%。浇铸过程中间包钢水T.O和N含量并未增加,但重新生成了Al2O3·MgO尖晶石,重新生成的尖晶石是恶化钢水可浇性的主要原因。  相似文献   

5.
GCr15钢的生产流程为120 t BOF-LF-RH-CC工艺。BOF出钢加200 kg铝块进行强脱氧,同时LF过程控制Al含量至0.030%~0.045%,LF结束夹杂物主要为MgO·Al2O3,RH真空后MgO·Al2O3夹杂物被去除,钢水中夹杂物以钙铝酸盐为主,但是连铸浇铸过程MgO·Al2O3夹杂物又会重新生成。因为LF精炼过程Al-MgO和C-MgO反应的存在,高碳铝脱氧GCr15轴承钢LF精炼结束更容易获得MgO·Al2O3夹杂物,并促进中间包钢水MgO·Al2O3夹杂物重新生成。当BOF出钢仅加40 kg铝块进行预脱氧,LF结束钢水MgO·Al2O3夹杂物数量显著降低,同时中间包钢水中MgO·Al2O3夹杂物不再重新生成。此外,将低钛低铝硅铁由出钢过程改为LF过程加入,也可以有效控制钢水中MgO·Al2O3夹杂物数量。   相似文献   

6.
 为了研究高锰高铝低密度钢液与耐火材料间的相互作用规律,以Fe-20Mn-10Al-C(20%Mn、10%Al)低密度钢液与MgO耐火材料棒在1 600 ℃时界面反应为研究对象,分别反应30和60 min后对MgO耐火材料的微观结构以及钢中非金属夹杂物特征进行了观察。结果表明,反应后MgO耐火材料转变为3层结构,分别为致密的MgO·Al2O3尖晶石界面层,尖晶石颗粒、钙铝酸盐和MgO颗粒组成的过渡层以及MgO颗粒组成的原始层,且随着反应时间的增加,尖晶石界面层厚度增加;在高锰高铝低密度钢液与MgO耐火材料的相互作用下,钢中非金属夹杂物主要包括单一MgO·Al2O3夹杂、AlN夹杂、MgS夹杂和MgO·Al2O3-AlN、MgO·Al2O3-MgS等复合夹杂物。  相似文献   

7.
SCM435钢的生产流程为80 t BOF-LF-RH-280 mm×325 mm坯连铸。LF终点精炼渣成分为(/%):45~55CaO,10~15SiO2,20~30Al2O3,∑(FeO+MnO)≤1%。分析了RH加钙(0.0013%Ca)和RH不加钙(0.0002%Ca)对Φ13 mm盘条中D和Ds夹杂物的影响。结果表明,RH不加钙处理工艺夹杂物最大尺寸为7.65μm,Ds≤0.5级合格率为100%;RH加钙处理工艺夹杂物最大尺寸为25.68μm,Ds≤0.5级合格率为95%。在数量控制方面,RH不加钙处理工艺夹杂物指数由RH加钙工艺的0.72降至0.68,D类≤1.0合格率由RH加钙工艺的30%提高至75%;RH不加钙处理工艺夹杂物主要为MgO·Al2O3,少量钙铝酸盐夹杂,RH加钙工艺为镁铝尖晶石、钙铝酸盐和CaS多相夹杂。因此,在脆性D类和Ds类夹杂物尺寸、数量和类型控制上,RH不加钙处理工艺改善效果明显  相似文献   

8.
高速重轨钢中尖晶石夹杂物的形成及控制   总被引:1,自引:0,他引:1  
储焰平  谌智勇  刘南  张立峰 《钢铁》2020,55(1):38-46
 高速重轨钢采用无铝脱氧工艺,但是钢中常发现大颗粒纯的MgO-Al2O3夹杂物,严重影响产品质量。为了明确高速重轨钢中尖晶石夹杂物的来源,进一步控制重轨钢中夹杂物,通过对重轨钢拉伸断口进行分析,结合水口结瘤物分析、热力学计算及典型夹杂物分析,系统研究了高速重轨钢中尖晶石夹杂物的形成机理。结果表明,重轨钢中的尖晶石夹杂物分为单独存在的尖晶石和钙铝酸盐包裹的尖晶石两类。其中钙铝酸盐包裹的尖晶石为CaO-SiO2-Al2O3-MgO复合夹杂物在降温冷却过程中析出,析出温度与夹杂物中Al2O3和MgO质量分数有关;单独存在的小尺寸尖晶石夹杂物为钢液凝固冷却过程中析出,与钢液成分有关。此外,研究还表明,水口结瘤也是重轨钢中出现大颗粒镁铝尖晶石夹杂物的重要原因之一。因此,严格控制合金辅料中Mg、Als等杂质元素质量分数,防止钢液发生二次氧化、降低耐火材料侵蚀等,尽可能降低夹杂物中的Al2O3和MgO质量分数,对控制重轨钢中尖晶石夹杂物,提高产品质量至关重要。  相似文献   

9.
通过钢渣平衡实验研究,分析了精炼渣成分对82B钢液T.O和点状不变形夹杂物成分的影响;通过Fact-Sage热力学计算,得出硅锰脱氧82B钢中MgO·Al2O3尖晶石夹杂的生成条件.结果表明:降低精炼渣碱度、提高Al2O3含量均利于钢水全氧含量的降低;随着Al2O3含量的提高,复合氧化物夹杂的熔点升高.当熔渣碱度为0.93、Al2O3含量为5.1%时,夹杂物熔点最低;熔渣碱度为1.14、Al2O3含量为25.6%时,高Al2O3活度的熔渣导致MgO·Al2O3尖晶石夹杂生成;熔渣碱度为1.97、Al2O3含量为25.9%时,由于碱度升高,钢中无MgO·Al2O3尖晶石类夹杂物生成;熔渣碱度为0.93、Al2O3含量为5.1%时,由于Al2O3含量降低,钢中无MgO·Al2O3尖晶石类夹杂物生成,且夹杂物熔点较低.   相似文献   

10.
曾溢彬  包燕平  赵家七  王敏 《钢铁》2022,57(8):69-77
 某钢厂生产的55SiCr弹簧钢采用硅锰脱氧工艺,但在其冶炼过程中存在大量尖晶石类夹杂物,对最终产品的性能十分不利。尖晶石等硬、脆性夹杂物是弹簧在服役过程中疲劳断裂的主要因素之一,因此为明确弹簧钢中该类夹杂物的来源,进而控制并去除钢中非金属夹杂物,通过夹杂物自动分析、扫描电镜和能谱分析等手段,结合FactSage热力学计算分析了55SiCr弹簧钢冶炼过程夹杂物的演变及主要夹杂物的形成机理。分析结果表明,LF精炼后钢中夹杂物数量大幅上升,且其平均成分偏向SiO2-Al2O3-CaO三元相图中高熔点区域;夹杂物主要以SiO2·Al2O3·CaO·MgO为主,多表现为钙铝酸盐包裹或半包裹尖晶石的复合夹杂物类形态,此外还有少量单独的尖晶石夹杂物存在于钢中。对于上述夹杂物的形成及演变进行热力学计算,结果表明,钢液中Mg、Al含量上升将导致钢中析出大量尖晶石夹杂物,并与液态夹杂结合形成含镁复相夹杂物;同时,钢液成分的变化也会导致精炼过程生成的SiO2·Al2O3·CaO·MgO类夹杂物中MgO、Al2O3含量大幅增加,在复合夹杂物内部析出尖晶石相。因此,为减少硅锰脱氧弹簧钢中尖晶石类硬脆性夹杂物的生成,需要严格控制钢中Mg、Al含量,尽可能降低夹杂物中MgO、Al2O3含量,以实现对弹簧钢中非金属夹杂物的塑性化控制。  相似文献   

11.
针对钢厂生产含硫钢(0.10%~0.21%C,0.010%~0.050%S)出现的水口堵塞问题,利用SEM和EDS对各关键工艺流程钢样和水口堵塞样进行全面分析,结果表明:各流程钢样中粒径小于10μm的夹杂物均占94%以上,单位面积夹杂物个数随工艺流程的进行呈先降低后增加的趋势。夹杂物类型主要有CaS、CaO-MgO、MnS、MgO-Al2O3、Al2O3、CaO-Al2O3、CaO、CaO-MgO-Al2O3复合夹杂物等;水口堵塞物主要由FeO、Al2O3、MgO·Al203、CaO·Al203、CaO·2Al203组成。通过电弧炉出钢前向钢液喷吹一定量的焦炭粉,控制精炼渣中(FeO)≤1.50%、碱度2.0~4.0以及采取合适的钙处理和分阶段吹氩操作,需控制喂硫线速度在50~150 m/min;清扫中间包以及使用含硫钢专用保护渣等措施,减少了水口堵塞,控制硫化物级别≤3,减少钢液二次氧化和避免连铸事故。  相似文献   

12.
25CrMoVNi钢由120 t EAF-LF-RH脱气-φ600 mm圆坯连铸工艺生产,EAF出钢时加Al预脱气使[Al]s≥0.030%,并加入石灰造渣预精炼,LF精炼时炉渣表面加Al粒扩散脱氧,LF精炼渣的组成为(/%):53~57CaO,10~13SiO2,27~28Al2O3,6~9MgO,0.09~0.10MnO。RH脱气精炼结果表明,RH后T[O]由脱气前0.001 3%~0.001 5%降至0.000 5%;钢中TCa由0.001 9%降至0.000 9%~0.001 7%;夹杂物发生MgO·Al2O3→(MgO)z(CaO)x(Al2O3)y→(CaO)x(Al2O3)y的转变;最后以尖晶石类固相夹杂物数量迅速减少,以钙铝酸盐类的液相夹杂物数量呈现出先增加后减少,钢中夹杂物由6.7个/mm2下降至2.7个/mm2  相似文献   

13.
通过LF精炼和连铸过程钢水和炉渣取样,对3炉60钢冶炼各个阶段的T[O]显微夹杂物的数量、尺寸及类型的变化进行了系统研究。结果表明,在LF进站时,3炉60钢中T[O]为0.007 0%左右;从LF进站→钙处理后→软吹结束→中间包浇注→铸坯,3炉60钢中T[O]总体呈现缓慢降低的趋势,其铸坯中T[O]降到0.003%以下。LF进站时,3炉60钢中夹杂物以硅锰脱氧产物SiO2-Mn0-(Al2O3)复合夹杂为主;经钙处理后,其钢中夹杂物转变为CaO-SiO2-Al2O3-Mg0系复合夹杂,该复合夹杂物的主要成分为CaO+MgO 20%~40%,SiO2 20%~40%,Al2O3 30%-50%。由于中间包浇注过程钢液存在明显二次氧化,导致60钢中间包内钢水T[O]和二次氧化产物SiO2-MnO-(Al2O3)夹杂数量明显增加。  相似文献   

14.
吴辉强  顾超  林路  包燕平 《特殊钢》2016,37(1):34-36
SK5 弹簧钢(/% :0. 75 ~0. 84C, ≤0. 35Si, ≤0. 40Mn, ≤0. 035P,≤0.030S)经 100 t EAF-LF-VD-CC 流程生产。通过EAF出钢加硅镒合金和铝铁进行预脱氧,LF精炼过程添加80~150 kg铝镁钙和少量硅锭合金进行复合铝脱氧,精炼渣碱度11.13,(CaO)/(Al2O3) =4. 98等工艺措施,脱氧效果较明显,铸坯中平均全氧含量达到 11 x 10-6项,铸坯中氮含量达到35 x 10-6。冶炼过程夹杂物种类按纯Al2O3>硫化物一'MgO - A12O3 - CaO—MgO •Al2O3 • CaO • SiO2变化,铸坯中夹杂物主要为CaO-A12O3 • SiO2 - MgO系,其塑性化程度可通过调整精炼渣成分、降低精炼渣熔点实现进一步优化。  相似文献   

15.
0.88%Si无取向硅钢的生产工艺为100 t BOF出钢时加300kg石灰,终点[C]0.035%~0.05%,出钢温度1640~1650℃,RH吹氧脱碳,加99.0%Al-Fe合金6.69 kg/t,加70%Si-Fe合金15.70 kg/t,70 mm板坯连铸过程全程保护浇铸,使用镁质碱性中间包覆盖剂。分析结果表明,RH终点[O]28×10-6,铸坯[O]22×10-6,RH-前[N]为16×10-6,RH过程增氮4×10-6,RH结束到铸坯增氮6×10-6;RH脱碳终点时钢中夹杂物以球形MnO·Al2O3为主;RH出站时以不规则形状的Al2O3为主,并伴有少量单独存在的CaS夹杂;中间包钢液内的夹杂物主要以不规则形状的Al2O3为主;铸坯中多为不规则形状的Al2O3以及少量AlN,还有少量由结晶器卷渣引起的含Na成分的复合夹杂物。  相似文献   

16.
采用光学显微镜、扫描电子显微镜、非水溶液原位电解方法对比分析了镁处理(0.0006% Mg)和钙处理(0.0010% Ca)45钢中夹杂物类型、尺寸、分布及形态变化.研究表明,相对于传统的钙处理工艺,45钢中加入一定量的镁后,钢中的Al2O3转变为细小弥散的MgO·Al2 O3,MnS在凝固末期以MgO·Al2O3为形...  相似文献   

17.
研究了140 t LD-LF-RH-CC流程冶炼超低氧钢时精炼过程铝脱氧钢中夹杂物的变化。试验钢出钢过程加足够的铝脱氧,以尽快降低钢液中溶解氧。为使Al2O3转变为钙铝酸盐夹杂,选用CaO-Al2O3精炼渣系,渣中含3.00%~8.42%SiO2。结果表明,精炼时钢液中夹杂物的变化趋势为:纯Al2O3→尖晶石夹杂→CaO-Al2O3-MgO复合夹杂物,炉渣中8.42%SiO2炉次夹杂物转变慢于3.00%SiO2炉次;当炉渣CaO/Al2O3为1.60时,钢中夹杂物大多转变为低熔点CaO-Al2O3-MgO复合夹杂。精炼渣的成分控制应为(%):55~60CaO,35~40Al2O3, 5~10MgO。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号