首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
Compared with traditional mechanical seals,magnetic fluid seals have unique characters of high airtightness,minimal friction torque requirements,pollution-free and long life-span,widely used in vacuum robots.With the rapid development of Integrate Circuit(IC),there is a stringent requirement for sealing wafer-handling robots when working in a vacuum environment.The parameters of magnetic fluid seals structure is very important in the vacuum robot design.This paper gives a magnetic fluid seal device for the robot.Firstly,the seal differential pressure formulas of magnetic fluid seal are deduced according to the theory of ferrohydrodynamics,which indicate that the magnetic field gradient in the sealing gap determines the seal capacity of magnetic fluid seal.Secondly,the magnetic analysis model of twin-shaft magnetic fluid seals structure is established.By analyzing the magnetic field distribution of dual magnetic fluid seal,the optimal value ranges of important parameters,including parameters of the permanent magnetic ring,the magnetic pole tooth,the outer shaft,the outer shaft sleeve and the axial relative position of two permanent magnetic rings,which affect the seal differential pressure,are obtained.A wafer-handling robot equipped with coaxial twin-shaft magnetic fluid rotary seals and bellows seal is devised and an optimized twin-shaft magnetic fluid seals experimental platform is built.Test result shows that when the speed of the two rotational shafts ranges from 0-500 r/min,the maximum burst pressure is about 0.24 MPa.Magnetic fluid rotary seals can provide satisfactory performance in the application of wafer-handling robot.The proposed coaxial twin-shaft magnetic fluid rotary seal provides the instruction to design high-speed vacuum robot.  相似文献   

2.
A controllable and variable magnetic field was got by improving the oil cup of a MS-800 four-ball tester. By this improved four-ball tester, the tribological properties of Mn0.78Zn0.22Fe2O4 magnetic fluid in the magnetic field were tested. The worn surfaces of the steel balls lubricated with 6 wt% Mn0.78Zn0.22Fe2O4 magnetic fluid under different magnetic fields were observed by using a scanning electron microscope (SEM), while the elemental compositions of the wear scars were analyzed by means of energy dispersive spectrometry (EDS). It was found that the Mn0.78Zn0.22Fe2O4 nanoparticles had a diameter about 20 nm. Under magnetic field, the 46# turbine oil containing 6 wt% Mn0.78Zn0.22Fe2O4 nanoparticles showed much better friction-reducing and anti-wear abilities compared with lubrication without magnetic field. The worn surface, lubricated by 6 wt% Mn0.78Zn0.22Fe2O4 magnetic fluid lubricated under the effect of magnetic field, is smooth and the plowing is almost disappeared. Moreover, it is found that 22 mT magnetic induction is the optimum magnetic induction. Form theory study we found that under the effect of magnetic field, the bearing capacity increasing with the increasing of magnetic induction. When the eccentricity is small, the side leakage is highly decreased.  相似文献   

3.
The nucleation and formation of oxide film in unidirectional dry sliding contact has been studied in a vacuum chamber with and without the application of a magnetic field in the intention of identifying the role of magnetic intensity on the oxidation wear. The wear tests of the steel AISI 1045/steel AISI 1045 couple are investigated on a pin‐disc configuration under three various gas environments: in ambient air, under oxygen at 105 Pa and in vacuum at 5.10−5 Pa. The formation of oxide layer strongly depends on oxygen partial pressure and magnetic field intensity. These took the form of protective raised ‘islands’ of compacted debris which is developed gradually but rapidly increased as the oxygen partial pressure is increased and which could persist for extended periods during subsequent evacuation. Evidence from various experimental techniques indicates that the compacted debris is a mixture of iron oxides in the form of oxide‐covered particles, although the depth of oxide film has not yet been fully elucidated. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

4.
Magnetic fluid rotary vacuum seals have been shown to be effective in machinery operating in a vacuum chamber. Such seals have the advantages of simple design, zero leakage at almost any rotation speed, and low friction. They have no wear and require no maintenance. This paper presents results obtained from experimental investigations of the operation of magnetic fluid rotary seals under vacuum conditions. The paper discusses the test apparatus and the seals used, the test conditions, and the procedure. The experimental results show characteristic phenomena observed in magnetic fluid rotary vacuum seals, including changes in vacuum pressure, temperature, and frictional moment dependent on the rotation speed of the shaft, number of sealing stages, height of the sealing gap, and mean magnetic flux density in the sealing gap.  相似文献   

5.
Rotational electron-beam mastering (REBM) systems have been studied with the aim of achieving the high data density necessary to facilitate the fabrication of next-generation optical data media, such as holographic storage. This study reports the design and testing of an ionic liquid (IL)-lubricated hydrostatic spindle system comprising an IL bearing, IL supply pump, and ionic magnetic fluid seal; and its outgassing performance under high-vacuum conditions. An inner vacuum chamber pressure of approximately 10−4 Pa was maintained during rotation of the spindle system. The outgassed products, as measured by a quadrupole mass spectrometer, were primarily generated from the air components in the lubricant IL. The non-repeatable runout in the radial direction, which is an important parameter of REBM accuracy, was 100 nm for a rotational speed of less than 130 min−1. The proposed method can be used for a 100-nm scale REBM device.  相似文献   

6.
Magnetic field-assisted finishing is a deterministic process particularly used for finishing optical materials. The main component of this process is magnetorheological fluid which consists of magnetic particles, abrasive particles, carrier fluid such as water or oil, and some additives to impart stability. Under the influence of magnetic field (generated by either permanent magnet or electromagnet), magnetic particles form chain-like structure and support many abrasive particles to perform finishing of workpiece surface. Selection of abrasive and carrier fluid in this process is one of the major concerns which play vital role on finishing mechanism and surface quality. In the present experimental investigation, aluminum oxide and cerium oxide are chosen as abrasives while deionized water and paraffin oil are selected as carrier fluids. A set of experiments are carried out to study chemical interactions of abrasive and carrier fluid on the silicon surface. A rheological study is carried out to study behavior of magnetorheological fluid fluids under magnetic field.  相似文献   

7.
磁流变液离合器的设计与探讨   总被引:2,自引:0,他引:2  
介绍了磁流变液的材料特征,分析了磁流变液离合器的工作原理和基本结构,建立了磁流变液离合器的力矩计算模型;提出了磁流变液离合器参数设计的基本要求,并给出了磁流变液离合器的设计实例。  相似文献   

8.
由于磁流体具有磁性,如果在磁场作用下力的平衡发生变化,会因磁流体的流动而产生压力。将这种现象用到微系统中,可以获得1~1000mbar数量级的压力值。在试验装置中,用压阻式压力传感器得到了40mbar的压力。试验结果表明,磁流体和微系统的结合具有很大的潜能,为其应用于新的场合提供了研究基础。  相似文献   

9.
Magnetorheological fluid-based finishing (MRFF) process is widely used for fabrication of optical material such as glasses, lenses, mirrors, etc. Performance of the process is significantly affected by the properties (size, concentration, hardness, etc.) of the constituents of MR fluid. MR fluids have been prepared by varying three abrasive particles mean sizes (4 µm, 6 µm and 9 µm) with carbonyl iron particles (CIPs) having average particles size of 6 µm. Yield stress of MR fluids is measured using a rheometer. The composition of the fluid has CIPs of 25%, abrasive 10% (by volume) and rest of the base medium (liquid). The yield stress was evaluated at magnetic flux density of 0.33 Tesla. It is observed that MR fluid having the same particle size of CIPs and abrasive particles exhibits higher yield stress as compared to other combinations. The lowest yield stress is observed in case of 9 µm abrasive particles size. A set of finishing experiments is carried out to understand the effect of relative size of magnetic particles and abrasive particles on surface roughness values.  相似文献   

10.
磁流体是一种新型兼有磁性物体和流体特性的纳米功能材料,磁性体浸入磁流体具有近似真空中的零重力条件下自悬浮能力。基于该惯性传感原理研制的新型传感器,在传感结构上可以避免直接的机械接触,减少机械阻碍或摩擦。在传感结构中,磁流耦合效应对传感性能影响显著,通过分析固壁界面效应、评价阻尼影响因素,实现运动块位移减少是传感结构优化关键因素。基于经典流体动力学理论,视磁流体为非极性流体,联解耦合效应下磁流体力学方程。对理论方程进行分步建模,建立不同域积分变量,对不同结构传感运动块进行磁流阻力分析数值计算。数值计算及实验结果表明,在磁性控制下粘度对流阻影响幅度较大,多槽结构在减少极端压差的同时能够补偿流阻损失,可以实现增阻减少位移效果。  相似文献   

11.
A magnetic microelectromechanical systems (MEMS) actuator using a small permanent neodymium-magnet surrounded by magnetic fluid (MF) was developed and characterized. The magnet is enclosed in a cavity sandwiched by two identical thin PET-sheet diaphragms and is able to move smoothly due to the MF. The diaphragms deflect when an external magnetic force is applied to the magnet. This structure was adopted to prevent the diaphragms from being stiffened by attaching or fabricating a magnetic layer on the diaphragm surface and to secure the necessary volume of magnetic material. The magnets are 2–4 mm in diameter and the cavity is 5 mm in diameter and 1 mm in depth. The diaphragms are 20 μm in thickness. Experiments showed the displacement amplitude generated at the diaphragm center was in the range of 10–50 μm for attractive and repulsive magnetic force when magnetic flux density of 4–30 mT was applied. The response was within about 1 s. The deflection profile of the diaphragms can also be varied by changing the magnet position.  相似文献   

12.
磁性液体兼具液体材料的流动性和固体材料的磁性,能够在重力场和磁场的作用下长期稳定存在。磁性液体具有独特的一阶浮力特性,在磁场梯度的作用下能够悬浮起比自身密度大的非磁性物体。基于磁性液体的一阶浮力特性,设计了一种新型的磁性液体触觉传感器。当接触压力作用在悬浮触棒的非磁性触点时,悬浮触棒的移动将引起霍尔元件处的磁场变化,进而输出电压信号。该结构能够进行接触压力、表面轮廓和微小位移的同时测量。该触觉传感器体积小,相比于传统的硅片式触觉传感装置成本更低。磁性液体相比于固体材料来说,能够在系统中起到缓冲吸能的作用,进而提高了传感器系统的耐冲击性。在0~0.09 N的接触压力测量范围内,测量精度能够达到10-2 N量级,灵敏度3.34 V/N,线性度误差3.4%,迟滞误差1.4%,分辨率1.1%F.S.。  相似文献   

13.
针对牛顿型磁性流体密封的密封间隙较小、适用温度较低的不足,提出了对磁性流体载液的改进。采用高黏度非牛顿润滑脂作为磁性流体的载液,制备成以Fe3O4为磁性颗粒的磁性润滑脂。在试验台上实际测定了该磁性润滑脂用于密封时在不同工况和不同密封结构下的密封压力、密封处的温度,并对影响密封压力和密封处温度的主要原因进行了分析。结果表明,高黏度非牛顿磁性润滑脂密封比牛顿型磁性流体密封的承压能力更高,温度适用范围更广,密封间隙可以大大提高,并允许旋转轴存在一定量的径向跳动;通过调节内摩擦影响因素,可以降低密封处温度,延长使用寿命。  相似文献   

14.
Mn0.75Zn0.25Fe2O4 nanoparticles were used to characterize magnetic fields using an all-fiber Fabry–Perot interferometer. The 20-nm nanoparticles were fabricated with citrate and displayed a coercive field of approximately 10?mT. The nanoparticles were dispersed in oleic acid to prepare a magnetic fluid to fill a Fabry–Perot structure fabricated by arc splicing with conventional single-mode and hollow core photonic crystal fibers. This device provided sensitivity and resolution of 0.11?dB/mT and 0.09?mT, respectively. Thermal analysis indicated that the magnetic measurements are weakly depending on temperature (0.7?pm/°C and 7?×?10?3?dB/°C). This device offers low-cost fabrication, simple implementation and may be used in several industrial applications.  相似文献   

15.
磁流体密封中影响热损耗的因素分析   总被引:1,自引:0,他引:1  
磁流体作为一种性能优良的软磁性液体,近年来广泛应用于机械密封中。当其运用于高速旋转的轴密封时,由于磁流体本身的性质,在高速旋转个工况下易产生较大量的摩擦热,导致其密封性能下降,甚至失效。通过实验计算,分析了在高速旋转的工况下,磁流体粘度、温度等的变化,及其对密封的影响。  相似文献   

16.
赵猛  邹继斌  尚静  齐明 《光学精密工程》2009,17(6):1213-1217
行波磁场的产生、泵体结构的设计、磁性流体的动力学特性是磁性流体行波泵研究的关键技术。本文根据行波磁场产生的形式设计了直线型磁性流体行波泵,采用解耦计算分析和求解了磁性流体内行波磁场和力场的耦合问题,通过仿真和实验研究验证了设计的合理性和可行性。结果表明,行波磁场作用下的磁性流体流量与磁场的强度有直接关系:在磁性流体行波泵结构和磁性流体饱和磁化强度相同的条件下,磁场强度越强,其流量越大;当磁场强度从25 900 A/m增加到40 000 A/m时,单位时间内从行波泵内流出的磁性流体的体积由1.9 ml增加到3.1 ml;随着磁场强度的不断增加,磁性流体流量的变化率由于磁场对其粘度的影响而减小;而磁性流体的饱和磁化强度越大,其流量也越大。  相似文献   

17.
Electroless nickel–phosphorus (Ni–P) plating used in a range of hot embossing metal molds/dies and injection metal molds/dies must be manufactured to nano-precision roughness for proper operation of the molds/dies. We therefore developed a novel polishing technique for mirror surface finishing of this kind of magnetic material using a magnetic compound fluid (MCF) slurry. The effects of the magnetic and gravitational forces acting on the carbonyl iron particles (CIPs) and abrasive particles (APs) within the MCF slurry were studied first, and the behaviors of the CIPs and APs in the presence of an external magnetic field were predicted. Then, experiments were performed to confirm the predictions by investigating the distribution of the CIPs and APs on the working surface of the MCF slurry. Finally, four MCF slurries containing CIPs and APs with different diameters were employed to finish the Ni–P-plated STAVAX steel specimen at different working gaps. The results revealed that for the magnetic workpiece, the resultant vertical force attracted CIPs towards the work surface, whereas APs were pushed away from the work surface. However, the CIPs and APs showed opposite behaviors with the non-magnetic workpiece. The percentage of APs distributed on the working surface increased and the distribution became more even as either the diameter of the CIPs or the working gap increased, whereas that of CIPs had the opposite tendency. The MCF slurry containing bigger CIPs and smaller APs should be employed and the working gap should be set at a smaller value in order to perform mirror surface finishing of a magnetic Ni–P-plated surface. Under the experimental conditions in this work, the Ni–P-plated surface quality improved significantly, and a mirror surface roughness (Ra) of 4 nm was successfully achieved without leaving scratches or particle adhesion when using an MCF slurry containing CIPs 7 μm in diameter and APs 1 μm in diameter, showing that MCF slurries containing commercial CIPs are applicable to the nano-precision finishing of magnetic materials.  相似文献   

18.
On the basis of the Shliomis ferromagnetic fluid model, this paper is mainly concerned with the influences of convective fluid inertia forces in magnetic fluid‐based conical squeeze film plates in the presence of external magnetic fields. By applying the averaged momentum principle, a lubrication equation governing the film pressure is derived. Some previous contributions can be obtained from special cases of the present studies. Comparing with the non‐inertia non‐magnetic case, better squeeze film performances are predicted for the magnetic fluid‐based conical plates operating with a larger value of the inertial parameter of fluid inertia forces, the volume concentration of ferrite particles and the strength of applied magnetic fields. Some numerical results with specific cone angles are also provided in tables for engineering applications. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

19.
基于磁流体材料所具有的独特性能,提出新型的高精度的磁流体加速度传感器结构模型,分析其基本原理和工作要求。运用Pro/E来实现基本元件的建模和整体的装配,采用Pro/E、ADAMS来进行运动仿真和分析,实现模型的优化。  相似文献   

20.
剪切屈服应力是反映磁流变液流变特性的主要参数之一,稳定可控的磁场直接影响磁流变液剪切屈服应力的测量精度,因此磁场设计是否合理对磁流变液的流变性能测试具有重要的影响。针对外置式线圈产生的磁场强度较低且存在漏磁现象、对称式线圈中磁流变液装载不便导致测量过程持续性差等问题,设计了一种凹字型磁路,通过调整线圈位置来改变磁场结构,使磁力线垂直穿过磁流变液流动方向,同时可拆卸的组合式磁路设计在保证磁场强度需要的前提下实现了磁流变液的连续性测量。此外,还分析了不同电流下的磁场强度分布规律,并基于优化的磁路开展了磁流变液剪切屈服应力等力学性能参数的测试。与主流标准测试仪器相比,具有凹字型磁路结构的磁流变液测试系统所测得的剪切屈服应力平均相对偏差值约为10%,重复误差在6.34%以内,说明该磁路结构是磁流变测试中磁场装置设计的一种可行方法。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号