首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 802 毫秒
1.
Although Angiopoietin (Ang) 2 has been shown to function as a Tie2 antagonist in vascular endothelial cells, several recent studies on Ang2-deficient mice have reported that, like Ang1, Ang2 acts as a Tie2 agonist during in vivo lymphangiogenesis. However, the mechanism governing the Tie2 agonistic activity of Ang2 in lymphatic endothelial cells has not been investigated. We found that both Ang1 and Ang2 enhanced the in vitro angiogenic and anti-apoptotic activities of human lymphatic endothelial cells (HLECs) through the Tie2/Akt signaling pathway, while only Ang1 elicited such effects in human umbilical vein vascular endothelial cells (HUVECs). This Tie2-agonistic effect of Ang2 in HLECs resulted from low levels of physical association between Tie2 and Tie1 receptors due to a reduced level of Tie1 expression in HLECs compared to HUVECs. Overexpression of Tie1 and the resulting increase in formation of Tie1/Tie2 heterocomplexes in HLECs completely abolished Ang2-mediated Tie2 activation and the subsequent cellular responses, but did not alter the Ang1 function. This inhibitory role of Tie1 in Ang2-induced Tie2 activation was also confirmed in non-endothelial cells with adenovirus-mediated ectopic expression of Tie1 and/or Tie2. To our knowledge, this study is the first to describe how Ang2 acts as a Tie2 agonist in HLECs. Our results suggest that the expression level of Tie1 and its physical interaction with Tie2 defines whether Ang2 functions as a Tie2 agonist or antagonist, thereby determining the context-dependent differential endothelial sensitivity to Ang2.  相似文献   

2.
Angiopoietin-1 (Ang1) and Ang2 are ligands for the receptor tyrosine kinase Tie2. Structural data suggest that the two ligands bind Tie2 similarly. However, in endothelial cells Ang1 activates Tie2 whereas Ang2 can act as an apparent antagonist. In addition, each ligand exhibits distinct kinetics of release following binding. These observations suggest that additional factors influence function and binding of angiopoietins with receptors in the cellular context. Previous work has shown that Ang1 binding and activation of Tie2 are inhibited by Tie1, a related receptor that complexes with Tie2 in cells. In this study we have investigated binding of Ang1 and Ang2 to Tie2 in endothelial cells. In contrast to Ang1, binding of Ang2 to Tie2 was found to be not affected by Tie1. Neither PMA-induced Tie1 ectodomain cleavage nor suppression of Tie1 expression by siRNA affected the ability of Ang2 to bind Tie2. Analysis of the level of Tie1 co-immunoprecipitating with angiopoietin-bound Tie2 demonstrated that Ang2 can bind Tie2 in Tie2:Tie1 complexes whereas Ang1 preferentially binds non-complexed Tie2. Stimulation of Tie1 ectodomain cleavage did not increase the agonist activity of Ang2 for Tie2. Similarly, the Tie2-agonist activity of Ang2 was not affected by siRNA suppression of Tie1 expression. Consistent with previous reports, loss of Tie1 ectodomain enhanced the agonist activity of Ang1 for Tie2. Importantly, Ang2 was still able to antagonize the elevated Ang1-activation of Tie2 that occurs on Tie1 ectodomain loss. Together these data demonstrate that Ang1 and Ang2 bind differently to Tie2 at the cell surface and this is controlled by Tie1. This differential regulation of angiopoietin binding allows control of Tie2 activation response to Ang1 without affecting Ang2 agonist activity and maintains the ability of Ang2 to antagonize even the enhanced Ang1 activation of Tie2 that occurs on loss of Tie1 ectodomain. This provides a mechanism by which signalling through Tie2 can be modified by stimuli in the cellular microenvironment.  相似文献   

3.
The abnormal function of tyrosine kinase receptors is a hallmark of malignant gliomas. Tie2 receptor tyrosine kinase is a specific endothelial cell receptor whose function is positively regulated by angiopoietin 1 (Ang1). Recently, Tie2 has also been found in the nonvascular compartment of several tumors, including leukemia as well as breast, gastric, and thyroid cancers. There is, however, little information on the function of the Ang1/Tie2 pathway in the non-stromal cells within human tumors. We found that surgical glioblastoma specimens contained a subpopulation of Tie2+/CD31- and Tie2+/GFAP+ cells, suggesting that Tie2 is indeed expressed outside the vascular compartment of gliomas. Furthermore, analysis of a tissue array consisting of 116 human glioma samples showed that Tie2 expression in the neoplastic glial cells was significantly associated with progression from a lower to higher grade. Importantly, Ang1 stimulation of Tie2+ glioma cells resulted in increased adherence of the cells to collagen I and IV, suggesting that Tie2 regulates glioma cell adhesion to the extracellular matrix. Conversely, the down-regulation of Tie2 levels by small interference RNA or the addition of soluble Tie2 abrogated the Ang1-mediated effect on cell adhesion. In studying the expression of cell adhesion molecules, we found that Tie2 activation was related to the up-regulation of integrin beta1 levels and the formation of focal adhesions. These results, together with the reported fact that malignant gliomas express high levels of Ang1, suggest the existence of an autocrine loop in malignant gliomas and that a Tie2-dependent pathway modulates cell-to-extracellular matrix adhesion, providing new insights into the highly infiltrative phenotype of human gliomas.  相似文献   

4.
Modulation of Tie2 receptor activity by angiopoietin ligands is crucial for angiogenesis, blood vessel maturation, and vascular endothelium integrity. The role of the angiopoietin (Ang) and Tie system in myocardial infarction is not well understood. To investigate the participation of the Ang/Tie in myocardial infarction, adult Sprague-Dawley rats with ligation of the left anterior descending coronary artery to induce myocardial infarction were studied. Ang1, Ang2, Tie1, and Tie2 were measured immediately after ligation of the coronary artery, and at 6 h, 1 and 3 days, and 1, 2, 3 and 4 weeks after ligation by Northern blotting, Western blotting, and immunohistochemical staining. Ang2 mRNA significantly increased from 2 weeks (2.1-fold) to 4 weeks (2.9-fold) after the infarction in the left ventricular free wall. Tie2 mRNA increased significantly from 1 week (2.1-fold) to 4 weeks (3.8-fold) after the infarction. Ang2 protein also significantly increased from 3 days (1.9-fold) to 4 weeks (3-fold) after the infarction in the left ventricular free wall. Tie2 protein increased 2.4-fold at 3 weeks and 2.8-fold at 4 weeks after the infarction. Neither Ang1 nor Tie1 mRNA or protein showed any significant change at any time point after the infarction. The ratio of Ang2/Ang1 mRNA and protein in the study group was higher than that in the control group. Ang2 and Tie2 expression in nonischemic myocardium showed no significant change. Immunohistochemical study also showed increased immunoreactivity of Ang2 and Tie2 at the infarct border. In conclusion, Ang2 and Tie2 expressions significantly increased both spatial and temporal patterns after myocardial infarction in the rat ventricular myocardium, while Ang1 and Tie1 receptor expression did not.  相似文献   

5.
Tie2, an endothelial cell-specific receptor kinase, has an important role in tumour angiogenesis. In an attempt to identify peptides that specifically interact with and block the Tie2 pathway, a phage-displayed peptide library was screened on a recombinant Tie2 receptor. One peptide, NLLMAAS, completely abolished the binding to Tie2 of both angiopoietin 2 and angiopoietin 1 (Ang1). We further show that NLLMAAS specifically suppresses both Ang1-induced ERK activity and migration in human umbilical endothelial cells. Moreover, in vivo, this peptide inhibits angiogenesis in the chick chorioallantoic membrane assay. NLLMAAS is the first peptide described to interact with Tie2. Our results demonstrate that it is an efficient and specific antagonist of the binding of Tie2 ligands, and suggest that this peptide or its derivates may have potential applications in the treatment of angiogenesis diseases. It also represents a potent tool to dissect the molecular mechanisms involved in the Tie2 pathway.  相似文献   

6.
The Tie1 receptor tyrosine kinase was isolated over a decade ago, but so far no ligand has been found to activate this receptor. Here, we have examined the potential of angiopoietins, ligands for the related Tie2 receptor, to mediate Tie1 activation. We show that a soluble Ang1 chimeric protein, COMP-Ang1, stimulates Tie1 phosphorylation in endothelial cells with similar kinetics and angiopoietin dose dependence when compared with Tie2. The phosphorylation of overexpressed Tie1 was weakly induced by COMP-Ang1 also in transfected cells that do not express Tie2. When cotransfected, Tie2 formed heteromeric complexes with Tie1, enhanced Tie1 activation, and induced phosphorylation of a kinase-inactive Tie1 in a ligand-dependent manner. Tie1 phosphorylation was also induced by native Ang1 and Ang4, although less efficiently than with COMP-Ang1. In conclusion, we show that Tie1 phosphorylation is induced by multiple angiopoietin proteins and that the activation is amplified via Tie2. These results should be important in dissecting the signal transduction pathways and biological functions of Tie1.  相似文献   

7.
8.
Angiopoietin-1 (Ang1) signals via the receptor tyrosine kinase Tie2 which exists in complex with the related protein Tie1 at the endothelial cell surface. Tie1 undergoes regulated ectodomain cleavage in response to phorbol esters, vascular endothelial growth factor (VEGF) and tumour necrosis factor-α (TNFα). Recently phorbol esters and VEGF were found also to stimulate ectodomain cleavage of Tie2. Here we investigate for the first time the effects of factors activating ectodomain cleavage on both Tie1 and Tie2 within the same population of cells, and their impact on angiopoietin signalling. We find that phorbol ester and VEGF activated Tie1 cleavage within minutes followed by restoration to control levels by 24 h. However, several hours of PMA and VEGF treatment were needed to elicit a detectable decrease in cellular Tie2, with complete loss seen at 24 h of PMA treatment. TNFα stimulated Tie1 cleavage, and induced a sustained decrease in cellular Tie1 over 24 h whilst increasing cellular Tie2. These differential effects of agonists on Tie1 and Tie2 result in dynamic modulation of the cellular Tie2∶Tie1 ratio. To assess the impact of this on Ang1 signalling cells were stimulated with VEGF and TNFα for differing times and Ang1-induced Tie2 phosphorylation examined. Elevated Tie2∶Tie1, in response to acute VEGF treatment or chronic TNFα, was associated with increased Ang1-activated Tie2 in cells. These data demonstrate cellular levels of Tie1 and Tie2 are differentially regulated by pathophysiologically relevant agonists resulting in dynamic control of the cellular Tie2∶Tie1 balance and modulation of Ang1 signalling. These findings highlight the importance of regulation of signalling at the level of the receptor. Such control may be an important adaptation to allow modulation of cellular signalling responses in systems in which the activating ligand is normally present in excess or where the ligand provides a constitutive maintenance signal.  相似文献   

9.
The vascular wall is mainly composed of endothelial cells (ECs) and smooth muscle cells (SMCs). The crosstalking between these two cell types is critical in the vascular maturation process. Genetic studies suggest that the Tie2/angiopoietin 1 (Ang1) pathway regulates vascular remodeling. However, the molecular mechanism is unclear. PDGF is a potent chemoattractant for SMCs, and TGF-beta regulates SMC differentiation. Here, we examined gene regulation. PDGF-B stimulation upregulated Ang1 expression in SMCs through the PI3K and PKC pathways. PDGF-B stimulation also produced an acute induction of TGF-beta expression in SMCs through the MAPK/ERK pathway. Interestingly, TGF-beta negatively regulated Ang1 expression induced by the PDGF-B stimulation in SMCs. Reciprocally, we observed that stimulation of ECs with either Ang1 or TGF-beta slightly downregulated PDGF expression. A combination of both TGF-beta with Ang1 produced much stronger downregulation of PDGF. Our data showed complex gene regulations that include both positive and negative regulations between ECs and SMCs to maintain vascular homeostasis.  相似文献   

10.
Angiogenesis is crucial for lung development. Although there has been considerable exploration, the mechanism by which lung vascular and alveolar formation is controlled is still not completely understood. Here we show that low-density lipoprotein receptor-related protein 5 (LRP5), a component of the Wnt ligand-receptor complex, regulates angiogenesis and alveolar formation in the lung by modulating expression of the angiopoietin (Ang) receptor, Tie2, in vascular endothelial cells (ECs). Vascular development in whole mouse lungs and in cultured ECs is controlled by LRP5 signaling, which is, in turn, governed by a balance between the activities of the antagonistic Tie2 ligands, Ang1 and Ang2. Under physiological conditions when Ang1 is dominant, LRP5 knockdown decreases Tie2 expression and thereby, inhibits vascular and alveolar development in the lung. Conversely, when Ang2 dominates under hyperoxia treatment in neonatal mice, high LRP5 and Tie2 expression suppress angiogenesis and lung development. These findings suggest that the LRP5-Tie2-Ang signaling axis plays a central role in control of both angiogenesis and alveolarization during postnatal lung development, and that deregulation of this signaling mechanism might lead to developmental abnormalities of the lung, such as are observed in bronchopulmonary dysplasia (BPD).  相似文献   

11.
Tie2 is a receptor tyrosine kinase that is essential for the development and maintenance of blood vessels through binding the soluble ligands angiopoietin 1 (Ang1) and 2 (Ang2). Ang1 is constitutively produced by perivascular cells and is protective of the adult vasculature. Ang2 plays an important role in blood vessel formation and is normally expressed during development. However, its re-expression in disease states, including cancer and sepsis, results in destabilization of blood vessels contributing to the pathology of these conditions. Ang2 is thus an attractive therapeutic target. Here we report the directed evolution of a ligand trap for Ang2 by harnessing the B cell somatic hypermutation machinery and coupling this to selectable cell surface display of a Tie2 ectodomain. Directed evolution produced an unexpected combination of mutations resulting in loss of Ang1 binding but maintenance of Ang2 binding. A soluble form of the evolved ectodomain binds Ang2 but not Ang1. Furthermore, the soluble evolved ectodomain blocks Ang2 effects on endothelial cells without interfering with Ang1 activity. Our study has created a novel Ang2 ligand trap and provided proof of concept for combining surface display and exogenous gene diversification in B cells for evolution of a non-immunoglobulin target.  相似文献   

12.
Angiopoietin-2 (Ang2) is an extracellular protein and one of the principal ligands of Tie2 receptor that is involved in the regulation of vascular integrity, quiescence, and inflammation. The mode of secretion of Ang2 has never been established, however. Here, we provide evidence that Ang2 is secreted from endothelial cells via exosomes and that this process is inhibited by the PI3K/Akt/endothelial nitric oxide synthase (eNOS) signaling pathway, whereas it is positively regulated by the syndecan-4/syntenin pathway. Vascular defects in Akt1 null mice arise, in part, because of excessive Ang2 secretion and can be rescued by the syndecan-4 knock-out that reduces extracellular Ang2 levels. This novel mechanism connects three critical signaling pathways: angiopoietin/Tie2, PI3K/Akt/eNOS, and syndecan/syntenin, which play important roles in vascular growth and stabilization.  相似文献   

13.

Background

In the present study, we have investigated the possibility that cartilage oligomeric matrix protein angiopoietin1 (COMP-Ang1), important factor in angiogenesis, osteogenesis and the survival of mesenchymal stem cells (MSCs) through the Ang1/Tie2 pathway has beneficial effects on osteogenic differentiated cells (ODCs) from MSCs treated by advanced glycation end products (AGE), which are pathological factors of diabetes.

Methods

Primary culture of MSCs was used. For comparison analysis of AGE and COMP-Ang1 effects, we performed cell viability assay with each treated variety concentration for 24 h. Apoptosis rate and Caspase-3 activity were measured by each ELISA assay. To make sure with Ang1/Tie2 pathway, we performed small interfering RNA transfected to MSCs. Real-time RT-PCR was performed to identify ODCs marker genes. Immunoblotting was used to evaluate the expression of Tie2, AKT, p38 and ERK.

Results

Our results clearly demonstrate that COMP-Ang1 upregulates the phosphorylation of AKT and p38 by activating the Ang1/Tie2 signaling pathway, indicating that COMP-Ang1 affects both AGE-induced apoptosis and the attenuated osteogenic differentiation of MSCs through the p38/MAPK and PI3K/AKT pathways.

Conclusions

COMP-Ang1 improves cell viability and differentiation function of ODCs against AGE via Ang/Tie2 signaling pathway.

General significance

Our results suggest the potential importance of COMP-Ang1 as a new therapy for impaired bone formation that is associated with diabetes and advanced age.  相似文献   

14.
Angiopoietin (Ang) -1 and -2 and their receptor Tie2 play critical roles in regulating angiogenic processes during development, homeostasis, tumorigenesis, inflammation and tissue repair. Tie2 signaling is best characterized in endothelial cells, but a subset of human and murine circulating monocytes/macrophages essential to solid tumor formation express Tie2 and display immunosuppressive properties consistent with M2 macrophage polarization. However, we have recently shown that Tie2 is strongly activated in pro-inflammatory macrophages present in rheumatoid arthritis patient synovial tissue. Here we examined the relationship between Tie2 expression and function during human macrophage polarization. Tie2 expression was observed under all polarization conditions, but was highest in IFN-γ and IL-10 –differentiated macrophages. While TNF enhanced expression of a common restricted set of genes involved in angiogenesis and inflammation in GM-CSF, IFN-γ and IL-10 –differentiated macrophages, expression of multiple chemokines and cytokines, including CXCL3, CXCL5, CXCL8, IL6, and IL12B was further augmented in the presence of Ang-1 and Ang-2, via Tie2 activation of JAK/STAT signaling. Conditioned medium from macrophages stimulated with Ang-1 or Ang-2 in combination with TNF, sustained monocyte recruitment. Our findings suggest a general role for Tie2 in cooperatively promoting the inflammatory activation of macrophages, independently of polarization conditions.  相似文献   

15.
Sonic Hedgehog (Shh)-deficient mice have a severe lung branching defect. Recent studies have shown that hedgehog signaling is involved in vascular development and it is possible that the diminished airway branching in Shh-deficient mice is due to abnormal pulmonary vasculature formation. Therefore, we investigated the role of Shh in pulmonary vascular development using Shh/Tie2lacZ compound mice, which exhibit endothelial cell-specific LacZ expression, and Pecam-1 immunohistochemistry. In E11.5-13.5 Shh-deficient mice, the pulmonary vascular bed is decreased, but appropriate to the decrease in airway branching. However, when E12.5 Shh-deficient lungs were cultured for 4-6 days, the vascular network deteriorated compared to wild-type lungs. The expression of vascular endothelial growth factor (Vegf) or its receptor Vegfr2 (KDR/Flk-1) was not different between E12.5-13.5 Shh-deficient and wild-type lungs. In contrast, angiopoietin-1 (Ang1), but not Ang2 or the angiopoietin receptor Tie2, mRNA expression was downregulated in E12.5-E13.5 lungs of Shh null mutants. Recombinant Ang1 alone was unable to restore in vitro branching morphogenesis in Shh-deficient lungs. Conversely, the angiogenic factor fibroblast growth factor (Fgf)-2 alone or in combination with Ang1, increased vascularization and tubular growth and branching of Shh-deficient lungs in vitro. The angiogenic factors did not overcome the reduced smooth muscle cell differentiation in the Shh null lungs. These data indicate that early vascular development, mediated by Vegf/Vegfr2 signaling proceeds normally in Shh-deficient mice, while later vascular development and stabilization of the primitive network mediated by the Ang/Tie2 signaling pathway are defective, resulting in an abnormal vascular network. Stimulation of vascularization with angiogenic factors such as Fgf2 and Ang1 partially restored tubular growth and branching in Shh-deficient lungs, suggesting that vascularization is required for branching morphogenesis.  相似文献   

16.
The angiopoietins are a family of growth factors critical for development and maintenance of the vasculature. The primary amino acid sequence of the angiopoietins predicts that they are comprised of a coiled-coiled and a fibrinogen-like domain. The coiled-coiled domain mediates ligand multimerization, whereas the fibrinogen domain engages the receptor. This multimerization is required to elicit a ligand-mediated biological effect via activation of their receptor Tie2. In vitro and in vivo knockout studies have suggested that the angiopoietins are chemotactic for endothelial cells. We were interested in ascertaining whether the angiopoietins have this activity within the animal proper. To accomplish this we engineered a dominant-interfering form of angiopoietin (Ang) 1, called Ang1cc. Ang1cc contains the coiled-coiled domain, which can heterodimerize with other angiopoietins produced in the same cell. We show that Ang1cc can inhibit Tie2 activation and can inhibit Ang1 activity in vitro and in vivo.  相似文献   

17.
对血管生成素及其相关蛋白的研究进展和分子生物学特性进行了综述,迄今,已经发现了4种血管生成素及某些血管生成素的同工蛋白或变异体。这些蛋白质具有共同的结构,即氨基端与分泌相关的信号肽,介导同源寡聚体形成的螺旋样结构域,和羧基末端介导配体活性的纤维蛋白原样结构域。血管生成素均可与Tie-2受体结合,但只有血管生成素1和4可激活Tie-2受体。血管生成素1和4为效应剂而血管生成素2和3为拮抗剂。对于血管生成素是否可与Tie-1结合尚不清楚。血管生成素相关蛋白具有公认的血管生成素的特征性结构,对其功能及其作用途径还不十分了解,有待于进一步研究。Tie-1和Tie-2的其他配体以及血管生成素相关蛋白类似物的特异受体有可能在今后得到阐明。  相似文献   

18.
In this study, we tested the hypothesis that the Angiopoietin 1 (Ang1)/Tie2 pathway mediates simvastatin-induced vascular integrity and migration of neuroblasts after stroke. Rats were subjected to 2 hrs of middle cerebral artery occlusion (MCAo) and treated, starting 1 day after stroke with or without simvastatin (1 mg/kg, daily) for 7 days. Simvastatin treatment significantly decreased blood–brain barrier (BBB) leakage and concomitantly, increased Ang1, Tie2 and Occludin expression in the ischaemic border (IBZ) compared to the MCAo control group. Simvastatin also significantly increased doublecortin (DCX, a marker of migrating neuroblasts) expression in the IBZ compared to control MCAo rats. DCX was highly expressed around vessels. To further investigate the signalling pathway of simvastatin-induced vascular stabilization and angiogenesis, rat brain microvascular endothelial cell (RBMEC) culture was employed. The data show that simvastatin treatment of RBMEC increased Ang1 and Tie2 gene and protein expression and promoted phosphorylated-Tie2 activity. Simvastatin significantly increased endothelial capillary tube formation, an index of angiogenesis, compared to non-treated control. Inhibition of Ang1 or knockdown of Tie2 gene expression in endothelial cells significantly attenuated simvastatin-induced capillary tube formation. In addition, simvastatin significantly increased subventricular zone (SVZ) explant cell migration compared to non-treatment control. Inhibition of Ang1 significantly attenuated simvastatin-induced SVZ cell migration. Simvastatin treatment of stroke increases Ang1/Tie2 expression and thereby reduces BBB leakage and promotes vascular stabilization. Ang1/Tie2 expression induced by simvastatin treatment promotes neuroblast micro-vascular coupling after stroke.  相似文献   

19.
Tie2 belongs to the receptor tyrosine kinase family and functions as a receptor for Angiopoietin-1 (Ang1). Gene-targeting analyses of either Ang1 or Tie2 in mice reveal a critical role of Ang1-Tie2 signalling in developmental vascular formation. It remains elusive how the Tie2 signalling pathway plays distinct roles in both vascular quiescence and angiogenesis. We demonstrate here that Ang1 bridges Tie2 at cell-cell contacts, resulting in trans-association of Tie2 in the presence of cell-cell contacts. In clear contrast, in isolated cells, extracellular matrix-bound Ang1 locates Tie2 at cell-substratum contacts. Furthermore, Tie2 activated at cell-cell or cell-substratum contacts leads to preferential activation of Akt and Erk, respectively. Microarray analyses and real-time PCR validation clearly show the differential gene expression profile in vascular endothelial cells upon Ang1 stimulation in the presence or absence of cell-cell contacts, implying downstream signalling is dependent upon the spatial localization of Tie2.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号