首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Proteomic tools for quantitation by mass spectrometry   总被引:6,自引:0,他引:6  
Techniques for the quantitation of proteins and peptides by mass spectrometry (MS) are reviewed. A range of labeling processes is discussed, including metabolic, enzymatic, and chemical labeling, and techniques that can be employed for comparative and absolute quantitation are presented. Advantages and drawbacks of the techniques are discussed, and suggestions for the appropriate uses of the methodologies are explained. Overall, the metabolic incorporation of isotopic labels provides the most accurate labeling strategy, and is most useful when an internal standard for comparative quantitation is needed. However, that technique is limited to research that uses cultured cells.  相似文献   

2.
3.
The brain is unquestionably the most fascinating organ, and the hippocampus is crucial in memory storage and retrieval and plays an important role in stress response. In temporal lobe epilepsy (TLE), the seizure origin typically involves the hippocampal formation. Despite tremendous progress, current knowledge falls short of being able to explain its function. An emerging approach toward an improved understanding of the complex molecular mechanisms that underlie functions of the brain and hippocampus is neuroproteomics. Mass spectrometry has been widely used to analyze biological samples, and has evolved into an indispensable tool for proteomics research. In this review, we present a general overview of the application of mass spectrometry in proteomics, summarize neuroproteomics and systems biology‐based discovery of protein biomarkers for epilepsy, discuss the methodology needed to explore the epileptic hippocampus proteome, and also focus on applications of ingenuity pathway analysis (IPA) in disease research. This neuroproteomics survey presents a framework for large‐scale protein research in epilepsy that can be applied for immediate epileptic biomarker discovery and the far‐reaching systems biology understanding of the protein regulatory networks. Ultimately, knowledge attained through neuroproteomics could lead to clinical diagnostics and therapeutics to lessen the burden of epilepsy on society. © 2009 Wiley Periodicals, Inc., Mass Spec Rev 29:197–246, 2010  相似文献   

4.
Mass spectrometry-based techniques can be applied to investigate collagen with respect to identification, quantification, supramolecular organization, and various post-translational modifications. The continuous interest in collagen research has led to a shift from techniques to analyze the physical characteristics of collagen to methods to study collagen abundance and modifications. In this review, we illustrate the potential of mass spectrometry for in-depth analyses of collagen.  相似文献   

5.
Instrument miniaturization is one way of addressing the issues of sensitivity, speed, throughput, and cost of analysis in DNA diagnostics, proteomics, and related biotechnology areas. Microfluidics is of special interest for handling very small sample amounts, with minimal concerns related to sample loss and cross-contamination, problems typical for standard fluidic manipulations. Furthermore, the small footprint of these microfabricated structures leads to instrument designs suitable for high-density, parallel sample processing, and high-throughput analyses. In addition to miniaturized systems designed with optical or electrochemical detection, microfluidic devices interfaced to mass spectrometry have also been demonstrated. Instruments for automated sample infusion analysis are now commercially available, and microdevices utilizing chromatographic or capillary electrophoresis separation techniques are under development. This review aims at documenting the technologies and applications of microfluidic mass spectrometry for the analysis of proteomic samples.  相似文献   

6.
7.
8.
Progress in proteomics research has led to a demand for powerful analytical tools with high separation efficiency and sensitivity for confident identification and quantification of proteins, posttranslational modifications, and protein complexes expressed in cells and tissues. This demand has significantly increased interest in capillary electrophoresis‐mass spectrometry (CE‐MS) in the past few years. This review provides highlights of recent advances in CE‐MS for proteomics research, including a short introduction to top‐down mass spectrometry and native mass spectrometry (native MS), as well as a detailed overview of CE methods. Both the potential and limitations of these methods for the analysis of proteins and peptides in synthetic and biological samples and the challenges of CE methods are discussed, along with perspectives about the future direction of CE‐MS. @ 2019 Wiley Periodicals, Inc. Mass Spec Rev 00:1–16, 2019.  相似文献   

9.
10.
Natural products, and their derivatives and mimics, have contributed to the development of important therapeutics to combat diseases such as infections and cancers over the past decades. The value of natural products to modern drug discovery is still considerable. However, its development is hampered by a lack of a mechanistic understanding of their molecular action, as opposed to the emerging molecule‐targeted therapeutics that are tailored to a specific protein target(s). Recent advances in the mass spectrometry‐based proteomic approaches have the potential to offer unprecedented insights into the molecular action of natural products. Chemical proteomics is established as an invaluable tool for the identification of protein targets of natural products. Small‐molecule affinity selection combined with mass spectrometry is a successful strategy to “fish” cellular targets from the entire proteome. Mass spectrometry‐based profiling of protein expression is also routinely employed to elucidate molecular pathways involved in the therapeutic and possible toxicological responses upon treatment with natural products. In addition, mass spectrometry is increasingly utilized to probe structural aspects of natural products–protein interactions. Limited proteolysis, photoaffinity labeling, and hydrogen/deuterium exchange in conjunction with mass spectrometry are sensitive and high‐throughput strategies that provide low‐resolution structural information of non‐covalent natural product–protein complexes. In this review, we provide an overview on the applications of mass spectrometry‐based techniques in the identification and characterization of natural product–protein interactions, and we describe how these applications might revolutionize natural product‐based drug discovery. © 2009 Wiley Periodicals, Inc., Mass Spec Rev 29:126–155, 2010  相似文献   

11.
The role of mass spectrometry in plant systems biology   总被引:10,自引:0,他引:10  
Large-scale analyses of proteins and metabolites are intimately bound to advancements in MS technologies. The aim of these non-targeted "omic" technologies is to extend our understanding beyond the analysis of only parts of the system. Here, metabolomics and proteomics emerged in parallel with the development of novel mass analyzers and hyphenated techniques such as gas chromatography coupled to time-of-flight mass spectrometry (GC-TOF-MS) and multidimensional liquid chromatography coupled to mass spectrometry (LC-MS). The analysis of (i) proteins (ii) phosphoproteins, and (iii) metabolites is discussed in the context of plant physiology and environment and with a focus on novel method developments. Recently published studies measuring dynamic (quantitative) behavior at these levels are summarized; for these works, the completely sequenced plants Arabidopsis thaliana and Oryza sativa (rice) have been the primary models of choice. Particular emphasis is given to key physiological processes such as metabolism, development, stress, and defense. Moreover, attempts to combine spatial, tissue-specific resolution with systematic profiling are described. Finally, we summarize the initial steps to characterize the molecular plant phenotype as a corollary of environment and genotype.  相似文献   

12.
In the last decade, the improved performance and versatility of the mass spectrometers together with the increasing availability of gene and genomic sequence database, led the mass spectrometry to become an indispensable tool for either protein and proteome analyses in cereals. Mass spectrometric works on prolamins have rapidly evolved from the determination of the molecular masses of proteins to the proteomic approaches aimed to a large‐scale protein identification and study of functional and regulatory aspects of proteins. Mass spectrometry coupled with electrophoresis, chromatographic methods, and bioinformatics tools is currently making significant contributions to a better knowledge of the composition and structure of the cereal proteins and their structure–function relationships. Results obtained using mass spectrometry, including characterization of prolamins, investigation of the gluten toxicity for coeliac patients, identification of proteins responsible of cereal allergies, determination of the protein pattern and its modification under environmental or stress effects, investigation of genetically modified varieties by proteomic approaches, are summarized here, to illustrate current trends, analytical troubles and challenges, and suggest possible future perspectives. © 2011 Wiley Periodicals, Inc. Mass Spec Rev 31:448–465, 2012  相似文献   

13.
Protein phosphorylation is involved in nearly all essential biochemical pathways and the deregulation of phosphorylation events has been associated with the onset of numerous diseases. A multitude of tandem mass spectrometry (MS/MS) and multistage MS/MS (i.e., MSn) strategies have been developed in recent years and have been applied toward comprehensive phosphoproteomic analysis, based on the interrogation of proteolytically derived phosphopeptides. However, the utility of each of these MS/MS and MSn approaches for phosphopeptide identification and characterization, including phosphorylation site localization, is critically dependant on the properties of the precursor ion (e.g., polarity and charge state), the specific ion activation method that is employed, and the underlying gas‐phase ion chemistries, mechanisms and other factors that influence the gas‐phase fragmentation behavior of phosphopeptide ions. This review therefore provides an overview of recent studies aimed at developing an improved understanding of these issues, and highlights the advantages and limitations of both established (e.g., CID) and newly maturing (e.g., ECD, ETD, photodissociation, etc.) yet complementary, ion activation techniques. This understanding is expected to facilitate the continued refinement of existing MS/MS strategies, and the development of novel MS/MS techniques for phosphopeptide analysis, with great promise in providing new insights into the role of protein phosphorylation on normal biological function, and in the onset and progression of disease. © 2011 Wiley Periodicals, Inc., Mass Spec Rev 30:600–625, 2011  相似文献   

14.
Protein interactions are crucial to the life of a cell. The analysis of such interactions is allowing biologists to determine the function of uncharacterized proteins and the genes that encode them. The yeast two-hybrid system has become one of the most popular and powerful tools to study protein-protein interactions. With the advent of proteomics, the two-hybrid system has found a niche in interactome mapping. However, it is clear that only by combining two-hybrid data with that from complementary approaches such as mass spectrometry (MS) can the interactome be analyzed in full. This review introduces the yeast two-hybrid system to those unfamiliar with the technique, and discusses how it can be used in combination with MS to unravel the network of protein interactions that occur in a cell.  相似文献   

15.
Discovering new invertebrate neuropeptides using mass spectrometry   总被引:5,自引:0,他引:5  
Neuropeptides are a complex set of messenger molecules controlling a wide array of regulatory functions and behaviors within an organism. These neuromodulators are cleaved from longer protein molecules and often experience numerous post-translational modifications to achieve their bioactive form. As a result of this complexity, sensitive and versatile analysis schemes are needed to characterize neuropeptides. Mass spectrometry (MS) through a variety of approaches has fueled the discovery of hundreds of neuropeptides in invertebrate species in the last decade. Particularly successful are direct tissue and single neuron analyses by matrix-assisted laser desorption/ionization (MALDI) MS, which has been used to elucidate approximately 440 neuropeptides, and examination of neuronal homogenates by electrospray ionization techniques (ESI), also leading to the characterization of over 450 peptides. Additional MS methods with great promise for the discovery of neuropeptides are MS imaging and large-scale peptidomics studies in combination with a sequenced genome.  相似文献   

16.
Imaging mass spectrometry   总被引:3,自引:0,他引:3  
Imaging mass spectrometry combines the chemical specificity and parallel detection of mass spectrometry with microscopic imaging capabilities. The ability to simultaneously obtain images from all analytes detected, from atomic to macromolecular ions, allows the analyst to probe the chemical organization of a sample and to correlate this with physical features. The sensitivity of the ionization step, sample preparation, the spatial resolution, and the speed of the technique are all important parameters that affect the type of information obtained. Recently, significant progress has been made in each of these steps for both secondary ion mass spectrometry (SIMS) and matrix-assisted laser desorption/ionization (MALDI) imaging of biological samples. Examples demonstrating localization of proteins in tumors, a reduction of lamellar phospholipids in the region binding two single celled organisms, and sub-cellular distributions of several biomolecules have all contributed to an increasing upsurge in interest in imaging mass spectrometry. Here we review many of the instrumental developments and methodological approaches responsible for this increased interest, compare and contrast the information provided by SIMS and MALDI imaging, and discuss future possibilities.  相似文献   

17.
18.
生物质谱在蛋白质组学研究中的应用   总被引:9,自引:3,他引:9  
本文简述了生物质谱的发展以及在蛋白质组学研究中的应用。  相似文献   

19.
Accelerator mass spectrometry (AMS) has developed in the last 30 years many notable applications to the spectrometry of radioisotopes, particularly in radiocarbon dating. The instrumentation science of trace element AMS (TEAMS) that analyzes stable isotopes, also called Accelerator SIMS or MegaSIMS, while unique in many features, has also shared in many of these significant advances and has pushed TEAMS sensitivity to concentration levels surpassing many competing mass spectroscopic technologies. This review examines recent instrumentation developments, the capabilities of the new instrumentation and discernable trends for future development.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号