首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
聚甲醛/纳米CaCO3体系的制备与性能   总被引:1,自引:3,他引:1  
用纳米CaCO3填充改性聚甲醛(POM),研究了纳米CaCO3的含量、粒径对POM/纳米CaCO3复合体系力学性能、分散形态等的影响。结果表明,影响复合体系韧性的主导因素是纳米CaCO3在POM中的分散形态及其与POM间的界面粘结状况;纳米粒子在POM中分散均匀,分散相尺寸小,与POM间界面粘结好有利于提高复合体系的冲击韧性;纳米CaCO3的增强增韧作用优于微米CaCO3。  相似文献   

2.
童忠良 《湖北化工》2003,20(4):29-30,40
介绍了纳米CaCO3结构,测定了加入纳米CaCO3后涂料及其涂膜的性能的变化。揭示了纳米CaCO3对乳胶涂料性能的影响。  相似文献   

3.
PA6/纳米CaCO3复合材料的制备和性能   总被引:6,自引:2,他引:6  
在适宜的条件下将纳米CaCO3用硬脂酸通过超高速混合进行表面处理。采用熔融共混工艺制备了PA6/纳米CaCO3复合材料。结果表明,纳米CaCO3含量为1份左右时复合材料的拉伸强度达到最大值,比PA6高约11%,纳米CaCO3含量10份左右时复合材料缺口冲击强度达到最大值,比PA6高约40%;复合材料的拉伸弹性模量随纳米CaCO3含量增加而提高,在纳米CaCO3含量为10份时较PA6提高约20%,20份时提高约30%。  相似文献   

4.
制备了反应性单体改性纳米CaCO3填充PP复合材料,研究了反应性单体丙烯酸(AA)和苯乙烯(St)在有、无过氧化二异丙苯(DCP)存在下改性纳米CaCO3填充PP复合材料的力学性能,并用扫描电子显微镜(SEM)研究了复合材料弯曲断面的形态。结果表明,PP/改性纳米CaCO3的力学性能优于PP/微米CaCO3的力学性能;在DCP存在下,AA、AA与St混合改性可使PP/纳米CaCO3的拉伸性能和弯曲性能提高,减小拉伸强度随CaCO3含量增加而下降的趋势;并可有效提高纳米CaCO3在基体中的分散性和界面粘结性。  相似文献   

5.
研究了纳米CaCO3和SBS分别添加和复配添加对PP/K树脂(70/30)共混体系相容性的影响。结果表明:纳米CaCO3的质量分数为5.7%时,体系的分散相尺寸降低,分布均匀性改善,有一定的增容效果;当其质量分数为9.1%时,体系的相容性保持不变;SBS的增容效果与纳米CaCO3的类似。纳米CaCO3和SBS先双辊混炼后再复配填充PP/K树脂(70/30)体系,其质量分数为9.1%时,改变纳米CaCO3/SBS的配比,体系的相容性变化不大;纳米CaCO3与SBS复配填充PP/K树脂(70/30)体系的缺口冲击强度比纳米CaCO3或SBS单独填充体系的都有明显提高,但拉伸强度变化不大。  相似文献   

6.
纳米CaCO_3粒子填充UPVC的性能与影响因素研究   总被引:2,自引:0,他引:2  
研究了硬脂酸包覆的纳米CaCO3填充UPVC的力学性能与影响因素。研究结果表明,增加CaCO3的用量可提高UPVC的杨氏模量和缺口抗冲强度而屈服强度降低。与填充亚微米CaCO3不同,采用较低的塑炼温度有益于获得较高的材料韧性。在纳米CaCO3填充的UPVC中,使用少量的CPE型改性剂可获得超韧的UPVC。  相似文献   

7.
纳米CaCO3填充环氧树脂分散技术研究   总被引:1,自引:1,他引:1  
对纳米CaCO3填充环氧树脂的均匀分散技术进行了探讨。采用超声波振动和对纳米CaCO3进行硅烷偶联处理两种方法改进CaCO3在环氧树脂中的分散效果。扫描电镜观察表明,以上两种方法比普通搅拌混合效果更好,实现了纳米CaCO3在环氧树脂中的均匀分散。  相似文献   

8.
纳米CaCO3合成及原位改性的研究   总被引:3,自引:0,他引:3  
在旋转填充床反应器中合成了纳米CaCO3悬浮液,利用pH计跟踪Ca(OH)2碳化反应过程,研究了碳化反应过程原理。结果表明:旋转填充床能极大地强化相间传质与微观混合,提高体系中CaCO3的过饱和度,增大其成核及生长速率。加入适当的添加剂对纳米CaCO3进行原位改性;利用TEM照片研究了原位改性过程中纳米CaCO3的成核生长机理,并考察了添加剂的作用机理。  相似文献   

9.
纳米CaCO3填充环氧树脂分散技术及力学性能研究   总被引:5,自引:0,他引:5  
对纳米CaCO3填充环氧树脂(EP)的均匀分散技术进行了探讨。采用超声波振动和对纳米CaCO2进行硅烷偶联处理两种方法改进纳米CaCO3在EP中的分散效果。通过扫描电镜观察表明,采用以上两种方法比普通搅拌混合效果显著,实现了纳米CaCO3在EP中的均匀分散。并测试了试样的力学性能,进一步证明纳米CaCO3的增强,增韧作用。  相似文献   

10.
研究了纳米CaCO3用量对三元乙丙橡胶/聚丙烯热塑性硫化胶(EPDM/PPTPV)性能的影响。结果表明,随着纳米CaCO3用量的增加,EPDM/PPTPV的力学性能出现先增后降的现象。TPV的硬度随填料用量的增加逐渐增加.但用最超过40份后硬度增加趋缓。DMTA结果表明TPV橡胶相的Tg随填料的增加而增加,而其tanδ峰值下降。随着纳米CaCO3用量的增加TPV的弹性逐渐降低,熔体粘度增加。  相似文献   

11.
王训遒  蒋登高 《化工学报》2007,58(1):238-247
制备了纳米CaCO3复合丙烯酸涂料,通过对其主要性能进行检测表明,当改性纳米CaCO3的添加量为1.5%(质量)时,涂料的耐光性、耐水性、自洁性和贮存稳定性等显著改善。研究了添加轻钙、未改性纳米CaCO3、改性纳米CaCO3及其用量对丙烯酸涂料流变性的影响,结果表明,该体系的流动特性均符合Casson模型;当在丙烯酸涂料中添加1.5%改性纳米CaCO3时,其黏度对温度的敏感性下降,黏度显著降低,剪切稀化能力较强,Casson屈服应力较小,触变性增大,涂料性能改善与其流变性变化基本一致。此外,固体分改变或添加丁醇对添加改性纳米CaCO3复合丙烯酸涂料和传统丙烯酸涂料流变性的影响规律基本相同。  相似文献   

12.
MC尼龙/CaCO3纳米复合材料的制备及力学性能研究   总被引:11,自引:4,他引:7  
用超声分散原位聚合法制备了铸型(MC)尼龙/CaCO3纳米复合材料,用扫描电镜(SEM)对纳米CaCO3粒子在基体中的分散情况进行了表征,研究了纳米CaCO3用量对复合材料力学性能的影响。研究结果表明,纳米CaCO3对MC尼龙具有增韧和增强的双重效果,复合材料的拉伸强度和缺口冲击强度随着纳米CaCO3用量的增加先提高后降低,而断裂伸长率随着纳米CaCO3用量的增加而降低,当纳米CaCO3的用量为2%—3%时复合材料的综合性能最好。  相似文献   

13.
用轻质CaCO3填充新型聚烯烃弹性体POE,研究了填充体系的力学性能和流变性能随CaCO3含量变化的规律.发现随CaCO3填充量增加至40份,体系拉伸强度下降,拉断伸长率变化不大,冲击回弹性下降,邵氏硬度上升.POE8150/CaCO3的拉伸强度、邵氏硬度比POE8003/CaCO3小,前者的拉断伸长率、冲击回弹性大于后者.POE8150/CaCO3的流动曲线表明体系的整体流动性较好,可以较快地剪切速率挤出,CaCO3的加入使流动性变差.  相似文献   

14.
PUI/nano-CaCO3弹性体的合成及性能研究   总被引:1,自引:0,他引:1  
采用原位聚合方法合成了聚氨酯-异氰脲酸酯(PUI)/nano-CaCO3弹性体材料,并对其组成及性能进行了研究。结果表明,当PUI配方中NCO/OH摩尔比为10∶1、催化剂DMP-30质量分数为2%时,利用超声辐照技术将nano-CaCO3均匀分散于碳化二亚胺改性的液化MDI中原位聚合而成的PUI/nano-CaCO3弹性体,其力学性能和热稳定性得到明显提高,且随nano-CaCO3含量的增加而增加,当nano-CaCO3质量分数为8%时,弹性体综合性能最优。  相似文献   

15.
蒋果  黄汉雄 《塑料》2006,35(6):50-53
采用啮合型同向旋转双螺杆挤出机制备聚丙烯(PP)/纳米碳酸钙(nano-CaCO3)复合材料,制备过程中在双螺杆挤出机末端连接Haake在线流变仪进行在线流变性能测试。研究了两种螺杆组合结构、纳米CaCO3含量对PP/纳米CaCO3复合材料在线剪切黏度的影响,比较了在不同聚合物加工流场下PP/纳米CaCO3复合材料的在线流变性能。结果表明,引入分布混炼有利于降低复合材料的剪切黏度,复合材料剪切黏度随纳米粒子的加入先呈下降趋势,当达到某一含量后,再提高纳米粒子含量会使黏度提高。  相似文献   

16.
利用新型铝锆偶联剂对纳米CaCO3进行表面改性,采用光谱学分析方法对铝锆偶联剂在纳米CaCO3表面的吸附特性进行探讨。通过透射电镜(TEM)、沉降体积、浊度测试等实验对纳米CaCO3的表面改性效果进行评价。红外光谱分析表明,铝锆偶联剂以化学键合的方式吸附在纳米CaCO3的表面。但X射线衍射分析证明,纳米CaCO3表面吸附层物质的引入并未对纳米CaCO3粉体的化学组成产生影响。经表面改性,纳米CaCO3的界面性质发生了很大变化,纳米CaCO3在水中的沉降体积减少,悬浮液浊度明显增大,说明纳米CaCO3在水中的分散性得到很大改善。  相似文献   

17.
纳米CaCO3对LLDPE/POE/mPE力学性能影响   总被引:3,自引:0,他引:3  
采用不同种类及用量的偶联剂活化纳米碳酸钙(CaCO3),并以熔融共混方法制备了LLDPE(线性低密度聚乙烯)/POE(聚烯烃类弹性体)/mPE(茂金属聚乙烯)/纳米CaCO3复合材料,对该体系的力学性能进行了系统研究。结果表明,3.5%(质量分数,下同)的硼酸酯偶联剂SB-99可对纳米CaCO3起到良好的活化作用,随活化纳米CaCO3的加入,复合材料的拉伸强度与断裂伸长率呈峰形变化,且在纳米CaCO3含量为5%左右时达到最大值。  相似文献   

18.
王华  刘晓明 《塑料》2005,34(1):56-60
使用自主合成的端羧基聚酯和端叔胺基羧酸分别对水乳液中的nano-CaCO3进行表面处理,制备了可与PVC形成界面分子物理纠缠或热可逆交联的强界面结合能力的nano-CaCO3.研究了PVC-U/nano-CaCO3的力学性能与CaCO3的表面性质、填充量及表面处理剂分子量等因素的关系.研究结果表明,提高界面结合强度可改善CaCO3在基材中的分散状况并提高PVC-U/nano-CaCO3的屈服强度,却对于提高PVC的冲击能力无明显效果.  相似文献   

19.
用目前研究较多的纳米材料———纳米碳酸钙(Nano CaCO3)对PVC/PP共混体系进行改性后,再利用扫描电子显微镜(SEM)和能谱仪(EDS)观察共混物各相相容性及其对力学性能的影响。结果表明:将纳米碳酸钙引入PVC/PP共混体系后,共混物两相的相分离度降低并且力学性能也有了明显的改善;并且发现共混物力学性能的变化与其相态结构的改变存在着一定的关系。  相似文献   

20.
The enhanced maleic anhydride-end-capped poly(propylene carbonate)/starch blends were prepared through starch oxidization and modification with a coupling agent, aluminic ester. The interfacial interaction, rheological behavior, and properties of blends were investigated through Fourier transform infrared spectroscopy, rheological measurement, mechanical property test, differential scanning calorimetric, thermogravimetric analysis, and moisture absorption test. The results show that hydrogen-bonding interaction is formed between poly(propylene carbonate) and starch, which makes the tensile strength of maleic anhydride-end-capped poly(propylene carbonate)/starch blends improved significantly. The glass transition temperature (Tg) of blends is increased when coupling agent is induced into polymer system. When increasing the content of starch modified with coupling agent from 10 to 30%, Tg values for composites increased from 30.5 to 32.8°C. Thermogravimetric analysis results show that oxidation of starch can improve the thermal stability and modification of starch through aluminic ester that can further increase the thermal stability of maleic anhydride-end-capped poly(propylene carbonate)/starch blends. Oxidation of starch has no significant effect on moisture absorption for poly(propylene carbonate)/starch blends.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号