首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
利用形状记忆合金(Shape Memory Alloy,简称SMA)丝的超弹性,提出了一种具有复位功能的阻尼器。在SMA丝的Graesser本构模型基础上,建立了阻尼器恢复力的滑移双线性模型;假定滞回面积相等,提出了恢复力的滑移刚塑性模型以近似简化滑移双线性模型。采用等价线性化法建立了单自由度超弹性SMA减振结构在高斯白噪声激励下的平稳随机振动分析公式。通过一算例,考虑不同激励谱密度和结构阻尼比:比较了等价线性法和蒙特卡罗(Monte Carlo)模拟法计算的结构振动响应(位移标准差和速度标准差),证明了SMA减振结构随机振动控制理论的有效性;比较了等价线性减振结构和无控结构的动力特性(刚度和阻尼比)和振动响应,说明了SMA阻尼器能提高结构的刚度和阻尼比,因而可有效抑制结构的振动。  相似文献   

2.
The model of nonlinear deformation of shape memory alloys (SMA) is generalized to the case in which the possible structural transition in the reverse martensitic transformation is taken into account. The statement of active thermomechanical processes of proportional variation in the stress deviatoric components is justified. The problem of buckling on an SMA bar due to the reverse martensitic transformation is solved. It is shown that taking account of the structural transition under buckling in the process of reverse transformation significantly changes the solution of this problem.  相似文献   

3.
A thermomechanical model of a shape memory alloy beam bending under tip force loading is implemented in finite element codes.The constitutive model is a one dimensional model which is based on free energy and motivated by statistical thermodynamics.The particular focus of this paper is on the aspects of finite element modeling and simulation of the inhomogeneous beam bending problem.This paper extends previous work which is based on the small deformation Euler-Bernoulli beam theory and by treating an SMA beam as consisting of multi-layers in a twodimensional model.The flux terms are involved in the heat transfer equation.The simulations can represent both shape memory effect and super-elastic behavior.Different thermal boundary condition effect and load rate effect can also be captured.  相似文献   

4.
A constitutive modeling approach for shape memory alloy (SMA) wire by taking into account the microstructural phase inhomogeneity and the associated solid–solid phase transformation kinetics is reported in this paper. The approach is applicable to general thermomechanical loading. Characterization of various scales in the non-local rate sensitive kinetics is the main focus of this paper. Design of SMA materials and actuators not only involve an optimal exploitation of the hysteresis loops during loading–unloading, but also accounts for fatigue and training cycle identifications. For a successful design of SMA integrated actuator systems, it is essential to include the microstructural inhomogeneity effects and the loading rate dependence of the martensitic evolution, since these factors play predominant role in fatigue. In the proposed formulation, the evolution of new phase is assumed according to Weibull distribution. Fourier transformation and finite difference methods are applied to arrive at the analytical form of two important scaling parameters. The ratio of these scaling parameters is of the order of 106 for stress-free temperature-induced transformation and 104 for stress-induced transformation. These scaling parameters are used in order to study the effect of microstructural variation on the thermo-mechanical force and interface driving force. It is observed that the interface driving force is significant during the evolution. Increase in the slopes of the transformation start and end regions in the stress–strain hysteresis loop is observed for mechanical loading with higher rates.   相似文献   

5.
Facing the lateral vibration problem of a machine rotor as a beam on elastic supports in bending,the authors deal with the free vibration of elastically restrained Bernoulli-Euler beams carrying a finite number of concentrated elements along their length.Based on Rayleigh's quotient,an iterative strategy is developed to find the approximated torsional stiffness coefficients,which allows the reconciliation between the theoretical model results and the experimental ones,obtained through impact tests.The mentioned algorithm treats the vibration of continuous beams under a determined set of boundary and continuity conditions, including different torsional stiffness coefficients and the effect of attached concentrated masses and rotational inertias, not only in the energetic terms of the Rayleigh's quotient but also on the mode shapes,considering the shape functions defined in branches.Several loading cases are examined and examples are given to illustrate the validity of the model and accuracy of the obtained natural frequencies.  相似文献   

6.
7.
In the present work we propose a new thermomechanically coupled material model for shape memory alloys (SMA) which describes two important phenomena typical for the material behaviour of shape memory alloys: pseudoelasticity as well as the shape memory effect. The constitutive equations are derived in the framework of large strains since the martensitic phase transformation involves inelastic deformations up to 8%, or even up to 20% if the plastic deformation after the phase transformation is taken into account. Therefore, we apply a multiplicative split of the deformation gradient into elastic and inelastic parts, the latter concerning the martensitic phase transformation. An extended phase transformation function has been considered to include the tension–compression asymmetry particularly typical for textured SMA samples. In order to apply the concept in the simulation of complex structures, it is implemented into a finite element code. This implementation is based on an innovative integration scheme for the existing evolution equations and a monolithic solution algorithm for the coupled mechanical and thermal fields. The coupling effect is accurately investigated in several numerical examples including pseudoelasticity as well as the free and the suppressed shape memory effect. Finally, the model is used to simulate the shape memory effect in a medical foot staple which interacts with a bone segment.  相似文献   

8.
9.
10.
Pseudoelasticity and the shape memory effect (SME) due to martensitic transformation and reorientation of polycrystalline shape memory alloy (SMA) materials are modeled using a free energy function and a dissipation potential. Three different cases are considered, based on the number of internal state variables in the free energy: (1) austenite plus a variable number of martensite variants; (2) austenite plus two types of martensite; and (3) austenite and one type of martensite. Each model accounts for three-dimensional simultaneous transformation and reorientation. The single-martensite model was chosen for detailed study because of its simplicity and its ease of experimental verification. Closed form equations are derived for the damping capacity and the actuator efficiency of converting heat into work. The first law of thermodynamics is used to demonstrate that significantly more work is required to complete the adiabatic transformation than the isothermal transformation. Also, as the hardening due to the austenite/martensite misfit stresses approaches zero, the transformation approaches the isothermal, infinite specific heat conditions of a first-order transformation. In a second paper, the single-martensite model is used in a mesomechanical derivation of the constitutive equations of an active composite with an SMA phase.  相似文献   

11.
Solid-to-solid martensitic phase transformations are responsible for the remarkable behavior of shape memory alloys. There is currently a need for shape memory alloys with improved corrosion, fatigue, and other properties. The development of new accurate models of martensitic phase transformations based on the material’s atomic composition and crystal structure would lead to the ability to computationally discover new improved shape memory alloys. This paper explores the Effective Interaction Potential method for modeling the material behavior of shape memory alloys. In particular, an extensive parameter study of the Morse pair potential model of the stress-free B2 cubic crystal is performed. Results for the stability, potential energy, current unit cell volume, instantaneous bulk modulus, and the two instantaneous cubic shear moduli are presented and discussed. It is found that an Effective Interaction Potential model based on the Morse potential is appropriate for modeling transformations between the B2 cubic structure and the B19 orthorhombic structure, but is not likely to be capable of simulating the B2 cubic to B19′ monoclinic transformation found in the popular shape memory alloy NiTi. In fact, this conclusion may be extended to all types of pair interaction potential models.   相似文献   

12.
The paper presents an approach to passive vibration control of shear deformable and thin plates. The first of two methods of vibration control employs prestressed shape memory alloy (SMA) wires embedded in sleeves attached to the surface of the plate. The spacing between the wires can be arbitrary and variable enabling the development of a SMA support system for maximum control with minimum additional weight. The other method considered in the paper utilizes SMA wires supporting the plate at strategically selected points. The mechanism of passive control includes two components: (1) SMA wires prestressed as a result of constrained phase transformation act as an elastic foundation with a variable stiffness and (2) energy dissipation occurs as a result of hysteresis in superelastic wires vibrating together with the structure. As follows from examples, it is possible to achieve a significant reduction of the vibration amplitude over a broad spectrum of driving frequencies using any of two methods considered in the paper.  相似文献   

13.
采用基于第二近邻修正型嵌入原子势的分子动力学方法研究了纳米单晶NiTi合金的单程形状记忆效应,详细阐明了温度诱发马氏体相变和应力诱发马氏体重定向过程中纳米单晶的变形行为和微结构演化,进一步分析了加/卸载速率对NiTi合金单程形状记忆效应的影响。结果表明,NiTi纳米单晶在应力加载过程中发生马氏体重定向,卸载后存在残余应变;当加热到奥氏体转变结束温度以上时,马氏体逆相变为奥氏体相,残余应变逐渐减小,但未完全回复;随着应力加载速率的增加,重定向临界应力和模量逐渐增加;再次降温过程中不同加载速率下的原子结构演化各不相同。  相似文献   

14.
采用基于第二近邻修正型嵌入原子势的分子动力学方法研究了纳米单晶NiTi合金的单程形状记忆效应,详细阐明了温度诱发马氏体相变和应力诱发马氏体重定向过程中纳米单晶的变形行为和微结构演化,进一步分析了加/卸载速率对NiTi合金单程形状记忆效应的影响。结果表明,NiTi纳米单晶在应力加载过程中发生马氏体重定向,卸载后存在残余应变;当加热到奥氏体转变结束温度以上时,马氏体逆相变为奥氏体相,残余应变逐渐减小,但未完全回复;随着应力加载速率的增加,重定向临界应力和模量逐渐增加;再次降温过程中不同加载速率下的原子结构演化各不相同。  相似文献   

15.
The double plate system with a discontinuity in the elastic bonding layer of Winker type is studied in this paper. When the discontinuity is small, it can be taken as an interface crack between the bi-materials or two bodies (plates or beams). By comparison between the number of multifrequencies of analytical solutions of the double plate system free transversal vibrations for the case when the system is with and without discontinuity in elastic layer we obtain a theory for experimental vibration method for identification of the presence of an interface crack in the double plate system. The analytical analysis of free transversal vibrations of an elastically connected double plate systems with discontinuity in the elastic layer of Winkler type is presented. The analytical solutions of the coupled partial differential equations for dynamical free and forced vibration processes are obtained by using method of Bernoulli’s particular integral and Lagrange’s method of variation constants. It is shown that one mode vibration corresponds an infinite or finite multi-frequency regime for free and forced vibrations induced by initial conditions and one-frequency or corresponding number of multi-frequency regime depending on external excitations. It is shown for every shape of vibrations. The analytical solutions show that the discontinuity affects the appearance of multi-frequency regime of time function corresponding to one eigen amplitude function of one mode, and also that time functions of different vibration basic modes are coupled. From final expression we can separate the new generalized eigen amplitude functions with corresponding time eigen functions of one frequency and multi-frequency regime of vibrations. The English text was polished by Keren Wang.  相似文献   

16.
Within the framework of a model of nonlinear deformations of shape memory alloys (SMA) under phase and structural transformations and for different statements of the problem, an analytical solution of the problem of stability of an SMA rod undergoing a direct martensitic phase transformation under the action of a compressive load is obtained. It is shown that taking account of the nonlinearity of the deformation process and structural transformation in the transition into the adjacent form of equilibrium significantly changes the solution for sufficiently flexible rods. At the same time, taking into account the strains developed in a phase transition is topical for thick-walled SMA elements.  相似文献   

17.
A microstructural finite element (MFE) model is developed to capture the interaction between martensitic transformations and plasticity in NiTi shape memory alloys (SMAs). The interaction is modeled through the grain-to-grain redistribution of stress caused by both plasticity and phase transformation, so that each mechanism affects the driving force of the other. A unique feature is that both processes are modeled at a crystallographic level and are allowed to operate simultaneously. The model is calibrated to pseudoelastic data for select single crystals of Ti–50.9at.%Ni. For polycrystals, plasticity is predicted to enhance the overall martensite volume fraction at a given applied stress. Upon unloading, residual stress can induce remnant (retained) martensite. For thermal cycling under load bias, plasticity is observed to limit the net transformation strain/cycle and increase the hysteretic width. Deformation processing, via plastic pre-straining at elevated temperature, is shown to dramatically alter subsequent pseudoelastic response, as well as induce two-way shape memory behavior during no-load thermal cycling. Overall, the model is suitable at smaller imposed strains, where martensite detwinning is not expected to dominate.  相似文献   

18.
Shape memory and pseudoelastic effects are thermomechanical phenomena associated with martensitic phase transformations, presented by shape memory alloys. This contribution concerns with the dynamical response of coupled shape memory oscillators. Equations of motion are formulated by assuming a polynomial constitutive model to describe the restitution force of the oscillators and, since they are associated with a five-dimensional system, the analysis is performed by splitting the state space in subspaces. Free and forced vibrations are analyzed showing different kinds of responses. Periodic, quasi-periodic, chaos and hyperchaos are all possible in this system. Numerical investigations show interesting and complex behaviors. Dynamical jumps in free vibration and amplitude variation when temperature characteristics are changed are some examples. This article also shown some characteristics related to chaos–hyperchaos transition.  相似文献   

19.
The dynamic behaviors of a dry friction oscillator with shape memory alloy (SMA) are investigated. Motion equations of the system are formulated by the restoring force of the oscillator in terms of a polynomial constitutive model dependent mainly on the temperature. The vibration response of the system and the influence of the temperature are investigated. It is shown that chaotic motions can be observed and dramatically changed by temperature characteristics. Moreover, some sliding bifurcations are also discovered and influenced by the temperature. Compared with conventional dry friction elastic oscillators, the dry friction SMA oscillator presents much richer dynamic behavior caused by pseudo-elasticity, and vibration reduction can be achieved through the shape memory property of SMA restraints.  相似文献   

20.
A two-level micromechanical theory is developed to study the influence of the shape and volume concentration of shape-memory alloy (SMA) inclusions on the overall stress–strain behavior of a SMA-reinforced composite. The first level exists on the smaller SMA level, in which, under the action of stress, parent austenite may transform into martensite. The second level is on the larger scale consisting of the metastable SMA inclusions and an inactive polymer matrix. The evolution of martensite microstructure is evaluated from the irreversible thermodynamics, in conjunction with the micromechanics and physics of martensitic transformation. By taking martensite to exist in the form of thin plates on the micro scale and assuming SMA inclusions to be homogeneously aligned spheroids on the macro scale, the overall stress–strain behaviors of a NiTi-reinforced composite are calculated for various SMA shapes and concentrations. The results indicate that, under a tensile axial loading, martensitic transformation is easier to take place when SMA inclusions exist in the form of long fibers, but most difficult to occur when they are in the form of flat discs. In general the levels of the applied stress at which martensite transformation commences, finishes, and austenitic transformation starts, and finishes, are found to decrease with increasing aspect ratio of the SMA inclusions while the damping capacity increases with it; these properties point to the advantage of using fibrous composites for actuators or sensors under a tensile loading.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号