首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Usually, resonating cantilevers come from silicon technology and are activated with pure bending mode. In this work, we suggest to combine high‐sensitive cantilever structure with both self‐actuated and self‐read‐out piezoelectric thick‐film for high electrical–mechanical coupling. This cantilever is realized through screen‐printing deposition associated with a sacrificial layer. It is composed of a PZT layer between two gold electrodes. Optimum performances of piezoelectric ceramics generally imply the use of mechanical pressure and very high sintering temperature that are not compatible with the screen‐printing process. Addition of eutectic composition Li2CO3‐Bi2O3‐CuO or borosilicate glass‐frit to PZT powder and application of isostatic pressure improve the sintering at a given temperature. Firing temperature of 850°C, 900°C, and 950°C is tested. Microstructural, electrical and mechanical characterizations are achieved. In addition to the bending mode, the in‐plane 31‐longitudinal vibration mode and the out‐of‐plane 33‐thickness resonance mode are revealed. Correlations between experimental results and modeling of the different vibration modes are established. The piezoelectric parameters of PZT cantilevers approach those of ceramics. Quality factors between 300 and 400 associated with the unusual 31‐longitudinal mode make screen‐printed PZT cantilevers good candidates for detection in liquid and gaseous media.  相似文献   

2.
Lead zirconate titanate (PZT) is a piezoelectric material that can sense or respond to mechanical deformations and can be used in ceramic electro-mechanical systems (C-MEMS). The microstructural, electrical, and piezoelectric characteristics of thick PZT films on low-temperature cofired ceramics (LTCC) and alumina substrates were studied. The PZT composition was prepared with low-melting-point additives in order to decrease the sintering temperature and to be compatible with thick-film technology. The integration of the PZT thick-film materials on ceramic substrates could lead to degradation of the PZT's characteristics due to the interactions between an active PZT layer and a substrate, particularly with glassy LTCC material. To minimize the interactions with LTCC substrates, an intermediate PZT barrier layer was integrated. The value of the piezoelectric coefficient d 33 was found to be up to 120 pC/N on an alumina substrate and approximately 50 on an LTCC substrate. Based on these results, a cantilever-type actuator was designed and fabricated on alumina substrates. Under an applied voltage of 200 V, the maximum tip deflection was about 5 μm.  相似文献   

3.
A piezoelectric/electrostrictive RAINBOW actuator is a monolithic bending device consisting of an electromechanically active layer and a reduced passive layer formed in a high-temperature reduction treatment. When the piezoelectric or electrostrictive layer is driven under an electric field or when the environmental temperature changes, bending deflection is produced because of the constraint of the reduced inactive layer or because of the thermal expansion coefficient difference of the two layers. In this study, general analytical expressions relating tip deflection, blocking force, and equivalent moment with an applied electric field and temperature change are derived for a cantilevered RAINBOW actuator. It is shown that optimal actuator performance can be achieved in the RAINBOW actuator by choosing a suitable thickness ratio of the reduced layer to the PZT layer. A series of RAINBOW cantilever actuators have been experimentally prepared from high-density, soft, lead zirconate titanate (PZT) ceramics. Different reduction layer thickness is obtained by adjusting the processing parameters, such as reduction temperature and time. The measured results on tip deflection and blocking force agree well with theoretical prediction under a weak electric field. However, when a high driving electric field is used, deviation is observed, which can be attributed to a nonlinear piezoelectric response and a nonlinear elastic behavior associated with soft PZT materials under high driving electric fields.  相似文献   

4.
制备了钨铜酸锶掺杂PZT三元体系压电陶瓷,测量了不同烧结温度和不同组成的材料的压电常数值,以压电常数为依据,确定了不同组成的材料的最优烧结温度及在最优烧结温度下材料的压电常数.研究了钨铜酸锶的掺杂量对材料机电耦合系数和机械品质因数的影响.并对不同组成的材料进行了XRD和SEM分析,研究了材料的物相组成和微观结构对材料性能的影响.讨论了Sr2+,W6+,Cu2+离子对PZT压电陶瓷进行改性的作用机理.实验结果表明,钨铜酸锶可对PZT材料进行较好的改性作用,使材料的压电常数提高到570pC/N.  相似文献   

5.
制备了 ( 1-xmol %)PZT -xmol?(Cu1 / 2 W1 / 2 )O3 三元体系压电陶瓷 ,研究了钨铜酸钡的掺杂比例和烧结制度对材料性能的影响 ;分析了Ba2 、Cu2 、W6 离子对PZT压电陶瓷进行改性的作用机理 ;利用XRD和SEM分析了物相组成和微观结构与材料性能的关系 ,研究表明 ,钨铜酸钡对PZT材料具有较好的改性作用  相似文献   

6.
Study of phase transition line of PZT ceramics by X-ray diffraction   总被引:2,自引:0,他引:2  
The transition line between tetragonal and rhombohedral phases in PZT ceramics has been studied on the basis of X-ray diffraction data, with a view to establishing the morphotropic phase boundary (MPB). In ceramic manufacturing technology, piezoelectric PZT ceramic compositions are most likely to be near the morphotropic phase boundary. This boundary can move when even small levels of dopants are present in the PZT ceramics.  相似文献   

7.
The PZT ceramics with different weight content from 78% to 89% were printed using the stereolithography method. The piezoelectric properties as well as the microstructure of the ceramics were investigated in detail. X-ray patterns and Raman spectra demonstrate that the steady PZT tetragonal phase has already formed in these sintered ceramics. Besides, the piezoelectric constant and dielectric constant were 212–345 pC/N and 760–1390, which were sligthly lower than that of the dry pressing disk. Furthermore, a two-dimensional ultrasound transducer array (8?×?8) was designed and developed to evaluate the properties of the 3D-printed PZT ceramics.  相似文献   

8.
Materials and processing conditions have been developed allowing co‐firing of fluxed PZT‐SKN materials with commercial low temperature co‐fired ceramic (LTCC) tapes. Previously, Pb(Zr0.53, Ti0.47)O3–Sr(K0.25, Nb0.75)O3 (PZT‐SKN) ceramics fluxed with 1 wt% LiBiO2 and 1 wt% CuO addition were shown to sinter to high density at 900°C for 1 h, with a large d33 piezoelectric coefficient of ~415 pm/V. Currently, the master sintering curve (MSC) approach has been used to study the densification behaviors of fluxed PZT‐SKN and LTCC tapes. Different sintering mechanisms for fluxed PZT‐SKN ceramics and LTCC materials are confirmed by analyzing the apparent activation energy (Qa). Using knowledge gained from MSC results, an optimized sintering profile was developed. Multilayer PZT‐SKN/HL2000 (HeraLock? Tape, Heraeus) stacks co‐fired at 900°C for 0.5 h maintain large piezoelectric coefficient (high field d33 > 340 pm/V). EDS analysis reveal limited interdiffusion of Pb from PZT‐SKN layers in LTCC and the appearance of Al, Ca, and Si in the PZT‐SKN near the PZT‐SKN/LTCC interface. Further, elemental interdiffusion was not detected at the center of piezoelectric layer in PZT‐SKN/LTCC multilayer ceramics and no subsequent reduction in piezoelectric coefficient d33 was observed. Finally, a piezoelectric microbalance with mass sensitivity of 150 kHz/mg was fabricated using the materials and methods developed.  相似文献   

9.
Gelcasting is a novel method for the molding of ceramic powder based on a synthesis of concepts derived from traditional ceramics and polymer chemistry. Although a wealth of literature has been published describing the application of the technology to the fabrication of structural ceramics, little has been reported about its application to the fabrication of functional ceramics. In order to extend the technology to the fabrication of piezoelectric ceramics in this article the colloidal chemistry of PZT powders in aqueous solution, the rheological behavior of the PZT suspension and the influence of dispersants on the rheology of the suspension and on the electrical properties of the gelcast PZT samples are investigated. Because the electrical properties of PZT are very sensitive to the chemical composition of the sample, unsuitable selected dispersants can result in the deterioration of the electric properties of the material although concentrated PZT slurry with low viscosity can be obtained by different dispersants.  相似文献   

10.
11.
To achieve high actuation forces in piezoelectric film actuators and transducers it is desirable to have relatively thick films. Sol-gel derived films are often limited in the maximum thickness that is obtainable due to the increased probability of cracking and delamination during processing. Composite film (ComFi) technology combines conventional sol-gel processing with ceramic powder processing to enable thick (>2 μm) ferroelectric films to be deposited onto silicon substrates at temperatures as low as 710 °C. Ten micrometre thick films have been fabricated using three different piezoelectric powders [hard doped PZT, soft doped PZT and PMN–PT(85–15)]. The resultant films have high densities with relative permittivities of 800, 900 and 1800, respectively. The d33 piezoelectric coefficients were found to be lower than corresponding values for the bulk material. This has been attributed to a combination of small grain size and the clamping effects of the rigid substrate. Hysteresis loop measurements show that greater fields are required to achieve a similar degree of polarisation to that of the bulk material. This indicates that the presence of the substrate also affects the ability to pole the material so further reducing the observed piezoelectric coefficient.  相似文献   

12.
The admittance-curve-fitting method is proposed to determine material coefficients of semiconductive piezoelectric ceramics. In this method, the frequency dependence of admittance of a plate resonator is calculated around the resonance frequency, and the piezoelectric, elastic, and dielectric coefficients in the theoretical formula are refined to fit the observed data. The result of a simulation using four types of hypothetical ceramics with different conductivities and electromechanical coupling factors indicates that various constants determined by this method are more accurate than those by the conventional method. The fitting method is applied practically to the PZT ceramics and Bi,K-doped PZT ceramics which show semiconductivity.  相似文献   

13.
晏伯武 《佛山陶瓷》2007,17(5):34-39
本文综述了大功率压电陶瓷材料的研究进展,介绍了其体系结构、应用和制备方法,最后指出掺杂改性、探索新的材料体系和制备工艺是改进其制备的有效途径。  相似文献   

14.
A five‐layer stack of lead zirconate titanate (PZT) thin films with Pt electrodes was fabricated for potential applications in nanoactuator systems. The 1 μm thick PZT films were deposited by a sol–gel technique, the platinum electrodes by sputtering. The PZT films were crack‐free, in spite of the use of silicon as a substrate, suggesting an increased toughness of the metal–ceramic composite. For piezoelectric characterization, the intermediate electrodes were liberated by successive etching of the PZT and Pt layers, obtaining a functional three‐ layer stack. A total thickness change of 5.2 nm was achieved with 10 V, measured by double beam laser interferometry. The small signal response was obtained as 0.49 nm/V. Finite element simulations were made to account for the thickness change in the substrate due to the transverse piezoelectric effect. The average response corresponds to an average d33,f of 120 pm/V. The multiple annealed buried layers show clearly a better performance with up to 175 pm/V. It is concluded that the electrode interfaces in the interior exhibit higher qualities, as supported by transmission electron microscopy, and that the multiple anneals were beneficial for PZT thin film quality.  相似文献   

15.
《Ceramics International》2019,45(15):18363-18370
This report documents the electrical features of (1-x) Pb(Zr0·70Ti0.30)O3x BiMn2O5 ceramics with x = 0–0.05 (PZT–BM). A structural disorder was introduced by doping with non-polar bismuth manganite (BM) to increase the chemical disorder in PZT ceramics, which is one of the reasons for its marked piezoelectric properties. The chemical disorder was confirmed using scanning electron microscopy. The rhombohedral symmetry of a crystal lattice was determined using the XRD powder test. To assess the influence of BM dopant on the electric properties of PZT, dielectric spectroscopy was performed at a frequency f = 1 kHz–1 MHz and in a temperature range of 290–680 K. Several effects on the dielectric characteristics were induced by the addition of BM, including the shift and diffuseness of the transition from the ferroelectric to the paraelectric phase and the diffuseness of the transition between two ferroelectric phases. The electrical conductivity increased as the BM content increased. Piezoelectric studies have shown that 0.99 PZT–0.01 BM ceramics exhibit better piezoelectric properties and higher permittivity than pure PZT ceramics. The 0.99 PZT–0.01 BM piezoelectric coefficient d33 increased by approximately 30% compared with pure PZT.  相似文献   

16.
The effects of thermal annealing on the structure of polycrystalline Pb(Zr0.3Ti0.7)O3 (PZT) ferroelectric thin films prepared by chemical solution deposition on Pt/TiO x electrode stacks were studied using scanning electron microscopy, transmission electron microscopy (TEM), and grazing incidence X-ray specular and diffuse reflectivity of synchrotron radiation. The stratified multilayered structure and element diffusions in the sample were characterized by TEM. Global statistical structural parameters including the density, surface or interface roughness and thickness of each layer in the samples were obtained from fitting the X-ray specular reflectivity using a homogeneous stratified multilayer model of PZT/Pt/TiO x /SiO2. The results showed that the PZT surface and PZT/Pt interface roughness changed slightly during thermal annealing in oxygen at 700°C. By contrast, the density increase of the PZT ceramic and density decrease of the Pt-bottom electrode during annealing were observed. A high density value of the PZT ceramic film after the annealing was found, up to 99.8% of the theoretical value of the corresponding bulk ceramics. The density changes of the PZT and Pt layers were further confirmed by X-ray diffuse reflectivity. The influences of the annealing treatment on the density changes of the PZT and Pt layers were attributed to the further densification of the PZT ceramic and incorporation of light elements such as Zr, Ti and O from the neighboring layers into the Pt layer, respectively, as discussed in correlation with the TEM analyses.  相似文献   

17.
Interfaces between functional ceramics, such as Pb(Zr0.5Ti0.5)O3 or PZT, and metal electrodes, such as Pt, are important for many devices. Maintaining an interface that is free of secondary phases is necessary for the efficient transfer of electrons and device function. However, there are instances where unstable transient phases form at the interface due to atomic diffusion, such as Pt3Pb. Here, we investigate the migration barriers for the diffusion of Pb across the PZT/Pt and PZT/Pt3Pb interfaces using density functional theory (DFT) and the climbing image nudge elastic band (c‐NEB) method. Our calculation models take into account the influence of atmospheric conditions on Pb diffusion through the preferential stabilization of defects near the interface as a result of changes to the Pb and O chemical potentials. In addition, the PZT structures that are stable above and below the Curie temperature are considered. The migration barriers are predicted to be strongly dependent on atmospheric conditions and the phase of the PZT, tetragonal or cubic. In particular, an inversion of the Pb diffusion direction at the PZT/Pt interface is predicted to take place as the oxygen partial pressure increases. This prediction is confirmed by experimental in situ X‐ray diffraction measurements of a PZT/Pt interface.  相似文献   

18.
On the road of lead-free piezoelectric ceramics into practical applications, the study of Ni-internal-electrode (K, Na)NbO3-based (KNN-based) multilayer actuators (MLAs) is an important part, possessing the advantages of environmentally friendly and low cost. The Ni-internal-electrode KNN-based MLAs with different layer numbers and layer thicknesses were fabricated via the tape casting method and sintered in the reducing atmosphere. The piezoelectric layers consist of the main KNN-based phase and a trace amount of second phase Mn4Nb2O9. The element diffusion between the Ni electrodes and KNN-based grains is tiny, indicating that Ni is suitable for co-firing with KNN-based ceramics. After sintering, the compressive stress perpendicular to the thickness direction and the “relative tensile stress” parallel to the thickness direction are retained in the MLAs, bringing influences on the piezoelectric and dielectric properties of KNN-based materials. Compared with the bulk ceramics, the prepared MLAs significantly reduce the driving voltages and increase the displacement outputs, which are more applicable to the scenarios of miniaturization and portability. Particularly, the 46-layer actuator shows high displacements of 1580 and 2737 nm under the voltages of 100 and 200 V, respectively. However, the inverse piezoelectric coefficient d33* for each layer of MLAs is still lower than that of the bulk ceramics, indicating that the piezoelectric properties of the KNN-based materials are suppressed. To give full play to the piezoelectric properties of KNN-based materials, more attentions should be paid to the design of reasonable electrode structure and the development of internal electrode paste for MLAs.  相似文献   

19.
江健  张震  曹林洪 《广州化工》2012,40(20):62-64
利用铌铁矿预产物合成法,研究不同温度烧结下Li2CO3掺杂对0.2 PMN-0.8PZT压电陶瓷(简称PLC)的相结构和电性能的影响。X射线衍射(XRD)和扫描电镜(SEM)的分析结果表明,掺杂LiCO3的0.2PMN-0.8PZT压电陶瓷经不同温度煅烧后,所有陶瓷样品的相组成均为纯钙钛矿相,并随着烧结温度的升高,PLC的相结构有由四方相向菱方相转变的趋势。通过0.2PMN-0.8PZT压电陶瓷掺杂LiCO3煅烧后的微观形貌、介电常数、压电性能、铁电性能的分析,发现经1200℃烧结的样品的介电和压电性能最佳:介电常数(εr)为38512,室温压电常数(d33)为300 pC/N,剩余极化强度(Pr)为31.3 C/cm2,矫顽电场(Ec)为7.5 kV/cm。  相似文献   

20.
Full-dense fine-grained bulk Pb(Zr,Ti)O3 (PZT) ceramics with a thicknesses of 300 μm were successfully obtained by aerosol deposition (AD) employing the starting powder subjected to an adequate pretreatment. It was found that formation of internal pores during the postdeposition firing treatment takes place in two different mechanisms on different scales. Residual carbons contained in the as-deposited PZT ceramics are responsible for the formation of extra-large pores, inducing severe distortion to the shape of the sample. On the other hand, trapped agglomerates in the as-deposited PZT ceramics are responsible for the formation of intermediate pores. The revealed mechanisms are discussed with a focus on the positive/negative correlation between the pretreatment procedure of starting powders and the formation of internal pores.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号