首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
采用传统固相法制备了(1-x)Ba(Mg1/3Nb2/3)O3-xMg4Nb2O9[(1-x)BMN-xM4N2,x=0.003~0.125]微波介质陶瓷,研究了相结构、烧结性能与介电性能随x的变化规律.结果表明:BMN与M4N2可以两相共存,且二者间存在有限固溶,BMN的烧结温度及高温稳定性有所降低.随着x的增大,介...  相似文献   

2.
A novel system Li3Mg2(Nb(1−x)Mox)O6+x/2 (0 ≤ x ≤ 0.08) microwave dielectric ceramics were fabricated by the solid-state method. The charge compensation of Mo6+ ions substitution for Nb5+ ions was performed by introducing oxygen ions. The X-ray diffraction patterns and Rietveld refinements indicated Li3Mg2(Nb(1−x)Mox)O6+x/2 ceramics with single phase and orthorhombic structure. Micro-structure and density confirmed that the grain of Li3Mg2(Nb(1-x)Mox)O6+x/2 ceramics grew well. In addition, the permittivity of Li3Mg2(Nb(1−x)Mox)O6+x/2 ceramics with the same trend as density decreased slightly with increasing Mo6+ ions content. However, the Q*f and τf were obviously improved with an appropriate amount of Mo6+ ions. When x ≤ 0.04, the Q*f was closely related to the bond valence of samples, while when x ≥ 0.06, the Q*f was closely related to the density of samples. The variations of τf and oxygen octahedral distortion were the opposite. In conclusions, the Li3Mg2(Nb0.98Mo0.02)O6.01 ceramic sintered at 1200°C for 6 hours exhibited outstanding properties: εr ~ 15.18, Q*f ~ 116 266 GHz, τf ~ −15.71 ppm/oC.  相似文献   

3.
A low‐permittivity dielectric ceramic Li2GeO3 was prepared by the solid‐state reaction route. Single‐phase Li2GeO3 crystallized in an orthorhombic structure. Dense ceramics with high relative density and homogeneous microstructure were obtained as sintered at 1000‐1100°C. The optimum microwave dielectric properties were achieved in the sample sintered at 1080°C with a high relative density ~ 96%, a relative permittivity εr ~ 6.36, a quality factor Q × f ~ 29 000 GHz (at 14.5 GHz), and a temperature coefficient of resonance frequency τf ~ ?72 ppm/°C. The sintering temperature of Li2GeO3 was successfully lowered via the appropriate addition of B2O3. Only 2 wt.% B2O3 addition contributed to a 21.2% decrease in sintering temperature to 850°C without deteriorating the dielectric properties. The temperature dependence of the resonance frequency was successfully suppressed by the addition of TiO2 to form Li2TiO3 with a positive τf value. These results demonstrate potential applications of Li2GeO3 in low‐temperature cofiring ceramics technology.  相似文献   

4.
    
It is difficult to get pure-phase Mg3B2O6 (abbreviated as MBO) ceramics by the traditional high-temperature solid-state reaction method. In this paper, pure-phase MBO ceramics were successfully densified and obtained by combining the cold sintering and post-annealing process. The relative density of MBO ceramics was ∼80% cold sintered at 150°C/90 min/800 MPa, which was further improved to ∼91% by post-annealing at 900°C, 400°C lower than that of the traditional high-temperature sintering process (∼1300°C). X-ray powder diffraction (XRD), scanning electron microscopy (SEM), and Raman results demonstrated that the secondary phase of MgO was effectively eliminated, and dense microstructure was observed by the cold-sintering process plus post-annealing treatment. Finally, the microwave dielectric properties of MBO were evaluated with εr: 5.15–6.37, Q×f: 5942–16 686 GHz, τf: −48.45–69.72 ppm/°C.  相似文献   

5.
利用常规固相法制备了Ba1-xZn1/3Nb2/303(x=O~0.02)陶瓷,研究了Ba缺位对Ba1-xZn1/3Nb2/3O3陶瓷的相成分、B位离子长程有序度(LRO)和微波介电性能的影响规律.X射线衍射(XRD)结果显示,适量的Ba缺位可以提高材料的阳离子有序度,x=0.01时陶瓷具有最大的阳离子有序度;Ba缺位...  相似文献   

6.
采用传统陶瓷烧结方法,在空气气氛下烧结制得Ba(Mg,Nb)O3(BMN)陶瓷,并分析了烧结温度对体系相组成及相结构的影响。X射线衍射(XRD)研究表明,随着烧结时间的增加,体系中钙钛矿相也相应增加。红外(FTIR)研究研究表明结构无序的BMN钙钛矿相中部分的区域出现了结构有序现象。通过X射线光电子能谱(XPS)可以发现,随着烧结温度的增加,体系中Nb2O5进入Ba(Mg1/3,Nb2/3)O3晶格。微波介电性能表明,随着烧结温度的增加,Ba(Mg,Nb)O3的rε和Qf值有逐渐增加的趋势。  相似文献   

7.
采用固相烧结法制备了0.40Pb(Mg1/3Nb2/3)O3-(0.6-x)PbZrO3-xPbTiO3压电陶瓷,系统研究了其组分变化对晶体结构、介电和压电性能的影响。研究结果表明,所有样品均属于钙钛矿结构,无第二相产生。随着组分的变化,存在三方相向四方相的转变,并且在x = 0.38附近获得准同型相界组分,呈现出最优的电学性能,最高的压电系数d33 = 520 pC/N,居里温度TC = 238 °C,平面机电耦合系数kp = 0.60,厚度机电耦合系数kt = 0.52,纵向机电耦合系数k33 = 0.73。  相似文献   

8.
研究了V2O5对Mg4Nb2O9陶瓷的烧结温度、相结构和微波介电性能的影响.结果表明,添加1%~8%的V2O5,能使该陶瓷的烧结温度降低到1000~1050℃而对其微波介电性能的影响很小,材料的主晶相为有序型刚玉结构的Mg4 Nb2O9,存在Mg4Nb2O6和Mg5Nb4O15杂相而没有检测到V2O5的存在.陶瓷的密度对微波介电性能起着决定性作用,介电常数e1与密度成线性关系(在99.99%的置信限内,其相关系数为0.98252),Q·f值与密度的关系较复杂.添加1%的v2O5,将Mg4Nb2O9陶瓷的烧结温度降低到了1050℃,得到了εr=12.72,Q·f=151040GHz的优异性能.  相似文献   

9.
    
Novel BaCa2M3O9 (M = Si, Ge) microwave dielectric ceramics were prepared via solid-state reaction with sintering at 1125°C–1275°C for 5 h. Single-phase BaCa2M3O9 (M = Si, Ge) ceramics were obtained according to stoichiometry. The single-phase BaCa2Ge3O9 ceramic was confirmed through Rietveld refinement and high-resolution transmission electron microscopy/selected area electron diffraction and synthesized for the first time. The BaCa2M3O9 (M = Si, Ge) exhibited a triclinic structure with a P 1 ¯ $bar 1$ space group and good microwave dielectric properties. The εr, Q × f, and τf values of BaCa2M3O9 (M = Si, Ge) ceramics are mostly dominated by the relative density, ionic polarizability, relative covalence, and bond energy of M–O bond, respectively. A high Q × f value (61 800 GHz at 16.3 GHz) was obtained in BaCa2Ge3O9 ceramic due to its high rc (Ge–O) and low intrinsic dielectric loss. The BaCa2Si3O9 ceramic exhibited small |τf| value (‒36.4 ppm/°C) due to its large ESi-O. Excellent microwave dielectric properties (εr = 8.31, Q × f = 61 800 GHz, and τf = ‒58.7 ppm/°C) were obtained for the BaCa2Ge3O9 ceramic.  相似文献   

10.
Novel low-εr, thermal and phase stable of (1-x)Mg3B2O6-xBa3(VO4)2 (x mol% =51, 53, 55, 57, 59) microwave composite ceramics were firstly fabricated and reported using the conventional solid-state reaction method. X-ray diffraction, scanning electron microscopy, energy dispersive X-ray, and Raman spectroscopy confirmed the coexistence of both phases without other phases. Near-zero temperature coefficient of resonant frequency (τf ~ +1.2 ppm/°C) is obtained for the 0.43Mg3B2O6-0.57Ba3(VO4)2 composite ceramic, with permittivity (εr) of 8.8 and high-quality factor (Q×f) of 45 420 GHz, which is a promising candidate for 5G applications.  相似文献   

11.
Solid solutions (1-x)PbMg1/3Nb2/3O3 + xPbCd1/3Nb2/3O3 with x = 0-0.30 are investigated with purpose to work out a capacitor ceramics with good dielectric properties and low sintering temperature. It is found that the perovskite phase forms at sintering near to 980°C and begins to decompose at higher temperatures. When x grows from 0 to 0.30, the Curie temperature linearly grows from -10°C to +25°C, the dielectric permittivity εm in the Curie point TC decreases from 18000 to 6800 and the phase transition becomes more diffused. The dielectric permittivity at room temperature is rather high and the temperature stability is improved. The system is of interest, because it can serve as a base for working out some ceramic materials for capacitors with low sintering temperature, which needs of no special atmosphere at burning.  相似文献   

12.
    
Microwave dielectric ceramics are considered to be one of the key materials for dielectric resonators (DR) and have very broad application prospects in the fifth generation (5G) mobile communication system. Here we have prepared high-quality factor Y3Al5O12 (YAG) transparent dielectric ceramics using high-purity α-Al2O3 and Y2O3 powders by cold isostatic pressing of the vacuum sintered with tungsten meshes as the heating elements. Optimum relative permittivity () ~10.53, quality factor × f (Q = 1/dielectric loss, f = resonant frequency) ~95, 270 GHz (at =7.37 GHz), and temperature coefficient of resonant frequency (TCF) ~ −51.7 ppm °C−1 were obtained at a sintering temperature of 1780°C for 12 h. For the first time, YAG transparent ceramic dielectric resonator antenna (DRA) is designed as a dominant mode and a higher-order mode using the aperture coupling feeding configuration excitation. The proposed transparent dielectric ceramic DRA can provide a broad impedance bandwidth of 4.193 GHz (ranging from 21.90 to 26.09 GHz) for S11 < −10 dB, radiation efficiency of 92.1%, and compact DR unit. The proposed DRA can be used potentially as a 5G millimeter (mm)-wave multiple-input-multiple-output (MIMO) antenna unit.  相似文献   

13.
In this study, 0.94Mg(1-3x/2)CexTiO3−0.06(Ca0.8Sr0.2)TiO3 (MCexT−CST, 0≤x≤0.01) composite ceramics were prepared at a low temperature of 1175°C by using the 50-nm-sized powders. The effects of Ce3+ doping on crystalline phase, microstructure, and microwave dielectric properties of MCexT−CST were studied. A main ilmenite (Mg,Ce)TiO3 phase and a minor perovskite (Ca0.8Sr0.2)TiO3 phase coexist well with the appearance of impurity MgTi2O5 phase in MCexT−CST. The dielectric properties of MCexT−CST are affected by the molecular polarizability, the impurity phase, and the Ce3+ doping. The replacement of Mg2+ by high valence Ce3+ could effectively inhibit the formation of oxygen vacancy, resulting in the enhancement of Q×f. When x = 0.005, MCexT−CST exhibits microwave dielectric properties with a moderate εr of 21.5, a high Q×f of 67 000 GHz, and a near-zero τf of −0.74 ppm/°C. The results reveal that the Ce3+ substitution is a prospective approach to optimize the microwave dielectric properties of MgTiO3-based ceramics.  相似文献   

14.
    
In this research, the steric effect of an exfoliation agent between n-ethylamine and triethylamine for the fabrication of Ca2Nb3O10 nanosheet was investigated. The experimental results revealed that the different structures of the exfoliation agent have affected to fabrication of Ca2Nb3O10 nanosheet. The use of n-ethylamine as an exfoliation agent gave a maximum exfoliation efficiency of 10 wt.% while the maximum exfoliation efficiency of triethylamine was 90 wt.%. The result showed that the difference in exfoliation efficiency was caused by the steric effect of exfoliation agents. The image of transmission electron microscopy exhibited Ca2Nb3O10 nanosheets which were formed by exfoliation of HCa2Nb3O10. Furthermore, the reaction time for liquid exfoliation was studied in this work. The reaction time at 4 h gave a maximum of exfoliation efficiency. The Ca2Nb3O10 suspension was tested capability to remove hazardous ions. After the experiment, we found the white precipitate which was the formation of CsCa2Nb3O10. The result showed that the Ca2Nb3O10 nanosheet was efficient for the removal of Cs+ ions in the wastewater.  相似文献   

15.
唐骅  伍海浜  孟范成 《硅酸盐通报》2017,36(3):1090-1093
采用传统固相反应法制备了添加H3BO3助烧剂的Li2Zn3Ti4O12 (LZT)陶瓷,分别通过XRD、SEM、排水法及网络分析仪等方法研究了不同H3BO3添加量对所得陶瓷的物相、微观形貌、烧结特性与微波介电性能的影响.结果表明在LZT陶瓷中添加3wt% H3BO3可有效降低烧结温度,在900 ℃/2 h烧结条件下可以获得高致密性及优异的微波介电性:ρ=4.15 g/cm3,εr=17.916,Q×f=61200 GHz,Tf=-52.87×10-6/℃.  相似文献   

16.
    
Millimeter-wave dielectric characteristrics of Sr1−xCaxSmAlO4 ceramics were investigated together with their structures. The solid solution in the space group I4/mmm was determined in the entire composition range, and the excellent microwave dielectric characteristics were not only obtained in the centimeter-wave range but also in the millimeter-wave range. The dielectric constant εr indicated a slight decrease from 19.5, and the significantly improved Q×f value was achieved, while the temperature coefficient of resonant frequency τf became more negative (from −3.4 to −12 ppm/°C) with increasing x. Q×f value showed apparent increase with increasing frequency, and the Q×f value at 28 GHz was improved from 88 000 to 160000 GHz with increasing x. The best combination of millimeter-wave dielectric characteristics was achieved at x = 0.6: εr = 19, Q×f = 143 300 GHz (at 27.3 GHz), and τf = −9.3 ppm/°C. The present ceramics could be expected as the promising candidates as millimeter-wave dielectric ceramics.  相似文献   

17.
    
Along with extensive research on the 3D printing and microwave absorption ceramics, 3D printing technology provides a great possibility for microwave absorption ceramics with arbitrary shapes in a faster, cheaper and more flexible way. This review focuses on the latest evolution in the raw materials, the structure design and the advanced additive manufacturing technologies of 3D printing microwave absorption ceramics. Firstly, the representative raw materials are divided into three categories, including ceramic powder, cermet powder and precursor resin. In addition, additives give rise to improvement of microwave absorption properties of ceramics. Secondly, based on two attenuation theories, structure design makes further efforts to enhance the microwave absorption performance of ceramics. Finally, comparisons are made between diversified manufacturing technologies to facilitate the selection of the best ones for different application in practical use. This study presents a summary of research that has been conducted to produce microwave absorption ceramics by additive manufacturing.  相似文献   

18.
江健  张震  曹林洪 《广州化工》2012,40(20):62-64
利用铌铁矿预产物合成法,研究不同温度烧结下Li2CO3掺杂对0.2 PMN-0.8PZT压电陶瓷(简称PLC)的相结构和电性能的影响。X射线衍射(XRD)和扫描电镜(SEM)的分析结果表明,掺杂LiCO3的0.2PMN-0.8PZT压电陶瓷经不同温度煅烧后,所有陶瓷样品的相组成均为纯钙钛矿相,并随着烧结温度的升高,PLC的相结构有由四方相向菱方相转变的趋势。通过0.2PMN-0.8PZT压电陶瓷掺杂LiCO3煅烧后的微观形貌、介电常数、压电性能、铁电性能的分析,发现经1200℃烧结的样品的介电和压电性能最佳:介电常数(εr)为38512,室温压电常数(d33)为300 pC/N,剩余极化强度(Pr)为31.3 C/cm2,矫顽电场(Ec)为7.5 kV/cm。  相似文献   

19.
    
The purpose of this research is focused on the manufacture and characterization of a partially stabilized zirconia ceramic with 3 mol% of Yttria and doped with .5 and 1.5 mol% of Nb2O5 to analyze the influence of doping, with the purpose of improving the properties before hydrothermal degradation. In the first instance, the microwave sintering process was used for the consolidation of this material, then the physical and mechanical properties were characterized. Together, the results obtained by the conventional sintering process were compared. A low hydrothermal degradation study (LTD) is presented at low temperatures in which possible changes in the mechanical properties of the ceramic materials are analyzed and its influence on the phase transformation that zirconia may present is observed. The mechanical properties were evaluated through hardness, fracture toughness, and Young's modulus tests. Likewise, their density was analyzed, and microstructure was characterized by FESEM. It was found that the microwave-sintered samples at 1200°C exhibited superior properties of toughness than even samples sintered by conventional methods at higher temperatures (1400°C). The sample of 3Y-TZP with 1.5 mol% Nb2O5 sintered by microwave with <.2% of porosity achieved a maximum fracture toughness value around 40% higher than the dense monolithic 3Y-TZP material.  相似文献   

20.
MgTiO3–CaTiO3 composite is one of the most important commercial microwave dielectric ceramics. However, the significant nonlinear change in resonant frequency with temperature and the temperature dependence of its temperature coefficient of resonant frequency (τf) severely deteriorate the temperature stability of MgTiO3–CaTiO3 composite. In this study, the Ca2+ in CaTiO3 was partially substituted with Sm3+ to prepare a series of (1 − y)MgTiO3yCa1−xSm2x/3TiO3 (x = 0.2–0.5) composites that was subsequently characterized. With increasing x from 0 to 0.5, the y value for obtaining the near-zero average τf between 20 and 80°C increases from 0.07 to 0.23; the dielectric constant of the composite correspondingly increases from 21.5 to 27.1, whereas the Qf value first increases and then decreases. Notably, (1 − y)MgTiO3yCa1−xSm2x/3TiO3 composites with greatly improved temperature stability are realized, and the nonlinearity of the change in resonant frequency with temperature and the rate of change of τf with temperature are reduced by 48%–73%, relative to those of 0.93MgTiO3–0.07CaTiO3 composite. These results are attributed to the significantly reduced temperature dependence of τf for the constituent phase of Ca1−xSm2x/3TiO3. This study sheds light on the development of temperature-stable microwave dielectric composites featuring constituent phases with τf of opposite signs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号

京公网安备 11010802026262号