首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
ReaxFF MD (Reactive Force Field Molecular Dynamics) is a promising method for investigating complex chemical reactions in relatively larger scale molecular systems. The existing analysis tools for ReaxFF MD lack the capability of capturing chemical reactions directly by analyzing the simulation trajectory, which is critical in exploring reaction mechanisms. This paper presents the algorithms, implementation strategies, features, and applications of VARxMD, a tool for Visualization and Analysis of Reactive Molecular Dynamics. VARxMD is dedicated to detailed chemical reaction analysis and visualization from the trajectories obtained in ReaxFF MD simulations. The interrelationships among the atoms, bonds, fragments, species and reactions are analyzed directly from the three-dimensional (3D) coordinates and bond orders of the atoms in a trajectory, which are accomplished by determination of atomic connectivity for recognizing connected molecular fragments, perception of bond types in the connected fragments for molecules or radicals, indexing of all these molecules or radicals (chemical species) based on their 3D coordinates and recognition of bond breaking or forming in the chemical species for reactions. Consequently, detailed chemical reactions taking place between two sampled frames can be generated automatically. VARxMD is the first tool specialized for reaction analysis and visualization in ReaxFF MD simulations. Applications of VARxMD in ReaxFF MD simulations of coal and HDPE (high-density polyethylene) pyrolysis show that VARxMD provides the capabilities in exploring the reaction mechanism in large systems with complex chemical reactions involved that are difficult to access manually.  相似文献   

2.
3.
However captivating and encouraging its potential, the global information infrastructure (GII) has a long way to go before reaching full effectiveness. The GII must address real user needs and capabilities rather than developers' opinions on them. Otherwise, this information universe will become a cemetery, a massive burial site for an infinitely large amount of data and information. Visualization and computer graphics can play a central role in helping the GII meet its challenges. This report discusses how to use graphics and visualization technologies to do just that. We chose the topics for this report to represent some key challenges in interacting with structured and unstructured information distributed over the GII. The authors offer practical approaches to improving user interaction with the GII, especially the World Wide Web. Computer graphics and visualization provide effective tools for tackling the problems  相似文献   

4.
Heparin was isolated in the beginning of the 20th century and until today remains as one of the most important drugs able to interfere with the haemostatic process. Due to the side effects produced by heparin therapy, new promising drugs have been developed, as the synthetic pentasaccharide (synthetically derived from the sequence GlcN-GlcA-GlcN-IdoA-GlcN). The anticoagulant activity of this compound is based on potentiation of antithrombin (AT) inhibitory activity upon serine proteinases of clotting cascade, a mechanism based on the conformational modification of AT. In this context, we present here a molecular dynamics (MD) study of the interaction between the synthetic pentasaccharide and AT. The obtained data correctly predicted an induced fit mechanism in AT-pentasaccharide interaction, showing a solvent-exposed P1 residue instead of a hided conformation. Also, the specific contribution of important amino acid residues to the overall process was also characterized, both in (2)S(0) and (1)C(4) conformations of IdoA residue, suggesting that there is no conformational requirement to the interaction of this residue with AT. Altogether, the results show that MD simulations could be used to characterize and quantify the interaction of synthetic compounds with AT, predicting its specific capacity to induce conformational changes in AT structure. Thus, MD simulations of heparin (and heparin-derived)-AT interactions are proposed here as a powerful tool to assist and support drug design of new antithrombotic agents.  相似文献   

5.
This paper presents a uniform conceptual model to co-operate with particle swarm optimization (PSO) for controlling the movement of crowds in computer graphics. According to the PSO mechanism, each particle in the swarm adopts the information to automatically find a path from the initial position to the optimum. However, PSO aims to obtain the optimal solution instead of the searching path, while the purpose of this work concentrates on the control of the crowd movement, which is composed of the generated searching paths of particles. Hence, in order to generate seemingly natural, appropriate paths of people in a crowd, we propose a model to work with the computational facilities provided in PSO. Compared to related approaches previously presented in the literature, the proposed model is simple, uniform, and easy to implement. The results of the conducted simulations demonstrate that the coupling of PSO and the proposed technique can generate appropriate non-deterministic, non-colliding paths for the use in computer graphics for several different scenarios, including static and dynamic obstacles, moving targets, and multiple crowds.  相似文献   

6.
As three-dimensional models of chemical objects are essential tools for understanding their intimate structure and function, nowadays molecular graphics techniques allow building, visualizing, and manipulating, of complex molecular structures and their related properties. This paper presents several developments recently achieved in this field, namely: the representation of macromolecular structures such as proteins; the modelization of molecular envelopes as dot surfaces, mesh surfaces, and solid models; the evaluation and visualization of color-coded reactivity indices based on intermolecular interaction energies. The last application is shown to be particularly useful in several applications, such as molecular recognition and drug design.  相似文献   

7.
The absolute free energy difference of binding (ΔG) between neuraminidase and its inhibitor was evaluated using fast pulling of ligand (FPL) method over steered molecular dynamics (SMD) simulations. The metric was computed through linear interaction approximation. Binding nature was described by free energy differences of electrostatic and van der Waals (vdW) interactions. The finding indicates that vdW metric is dominant over electrostatics in binding process. The computed values are in good agreement with experimental data with a correlation coefficient of R = 0.82 and error of σΔGexp = 2.2 kcal/mol. The results were observed using Amber99SB-ILDN force field in comparison with CHARMM27 and GROMOS96 43a1 force fields. Obtained results may stimulate the search for an Influenza therapy.  相似文献   

8.
In this paper, we report all-atom simulations of molecular crowding — a result from the full node simulation on the “K computer”, which is a 10-PFLOPS supercomputer in Japan. The capability of this machine enables us to perform simulation of crowded cellular environments, which are more realistic compared to conventional MD simulations where proteins are simulated in isolation. Living cells are “crowded” because macromolecules comprise ∼30% of their molecular weight. Recently, the effects of crowded cellular environments on protein stability have been revealed through in-cell NMR spectroscopy. To measure the performance of the “K computer”, we performed all-atom classical molecular dynamics simulations of two systems: target proteins in a solvent, and target proteins in an environment of molecular crowders that mimic the conditions of a living cell. Using the full system, we achieved 4.4 PFLOPS during a 520 million-atom simulation with cutoff of 28 Å. Furthermore, we discuss the performance and scaling of fast multipole methods for molecular dynamics simulations on the “K computer”, as well as comparisons with Ewald summation methods.  相似文献   

9.
A concept of vectorization of molecular dynamics Fortran programs for the use of the Cyber 205 machine is presented. It is shown that for calculations with larger particle systems the program runs faster on the 205 than on the Cray-1 by about a factor of two. Against conventional computers like the Cyber 175 an acceleration by a factor 10–15 is expected. A bit control vector is used instead of a neighbour list, which in principal provides calculations up to 6912 particles for the memory capacity of the Cyber 205. However, because the application of the bit vector requires computation times which grow proportional to N2, the CPU time for particle numbers of more than 2048 becomes prohibitively large.  相似文献   

10.
It is an exceptional success when multibody dynamics researchers Multibody System Dynamics journal one of the most highly ranked journals in the last 10 years. In the inaugural issue, Professor Schiehlen wrote an interesting article explaining the roots and perspectives of multibody system dynamics. Professor Shabana also wrote an interesting article to review developments in flexible multibody dynamics. The application possibilities of multibody system dynamics have grown wider and deeper, with many application examples being introduced with multibody techniques in the past 10 years. In this paper, the development of multibody dynamics is briefly reviewed and several applications of multibody dynamics are described according to the author’s research results. Simulation examples are compared to physical experiments, which show reasonableness and accuracy of the multibody formulation applied to real problems. Computer simulations using the absolute nodal coordinate formulation (ANCF) were also compared to physical experiments; therefore, the validity of ANCF for large-displacement and large-deformation problems was shown. Physical experiments for large deformation problems include beam, plate, chain, and strip. Other research topics currently being carried out in the author’s laboratory are also briefly explained. Commemorative Contribution.  相似文献   

11.
The study of vibrations of membranes is of importance in connection with design of loudspeaker diaphragms, telephone receivers and microphones and many other acoustical devices but also non-acoustical devices like automobiles. For higher order modes of vibrations calculating and plotting the vibrations becomes difficult. But it is easy to simulate these vibrations in computer graphics. In this paper vibrations of rectangular membranes are simulated in different modes taking care of the boundary conditions. It is also possible to visualise the actual vibrations in the computer monitor by allowing the membrane to vibrate from a maximum to minimum amplitude. To simulate these vibrations, nowadays, simulation packages like Mathematica, Maple, MATLAB etc. are being used. Here, an attempt is made to simulate these vibrations using the Java programming language.  相似文献   

12.
Protein folding studies were carried out by performing microsecond time scale simulations on the ultrafast/fast folding protein Engrailed Homeodomain (EnHD) from Drosophila melanogaster. It is a three-helix bundle protein consisting of 54 residues (PDB ID: 1ENH). The positions of the helices are 8-20 (Helix I), 26-36 (Helix II) and 40-53 (Helix III). The second and third helices together form a Helix-Turn-Helix (HTH) motif which belongs to the family of DNA binding proteins. The molecular dynamics (MD) simulations were performed using replica exchange molecular dynamics (REMD). REMD is a method that involves simulating a protein at different temperatures and performing exchanges at regular time intervals. These exchanges were accepted or rejected based on the Metropolis criterion. REMD was performed using the AMBER FF03 force field with the generalised Born solvation model for the temperature range 286-373 K involving 30 replicas. The extended conformation of the protein was used as the starting structure. A simulation of 600 ns per replica was performed resulting in an overall simulation time of 18 μs. The protein was seen to fold close to the native state with backbone root mean square deviation (RMSD) of 3.16 ?. In this low RMSD structure, the Helix I was partially formed with a backbone RMSD of 3.37 ? while HTH motif had an RMSD of 1.81 ?. Analysis suggests that EnHD folds to its native structure via an intermediate in which the HTH motif is formed. The secondary structure development occurs first followed by tertiary packing. The results were in good agreement with the experimental findings.  相似文献   

13.
Protein kinase B (PKB/Akt) is an attractive target for the treatment of tumor. Unlike PKB's ATP-competitive inhibitors, its allosteric inhibitors can maintain PKB's inactive state via its binding in a pocket between PH domain and kinase domain, which specifically inhibit PKB by preventing the phosphorylations of Thr308 and Ser473. In the present studies, MD simulations were performed on three allosteric inhibitors with different inhibitory potencies (IC50) to investigate the interaction modes between the inhibitors and PKBα. MM/GB(PB)SA were further applied to calculate the binding free energies of these inhibitors binding to PKBα. The computed binding free energies were consistent with the ranking of their experimental bioactivities. The key residues of PKBα interacting with the allosteric inhibitor were further discussed by analyzing the different interaction modes of these three inhibitors binding to PKBα and by calculating binding free energy contributions of corresponding residues around the binding pocket. The structural requirements were then summarized for the allosteric inhibitor binding to PKBα. A possible structural mechanism of PKBα inhibition induced by the binding of allosteric inhibitor was formulated. The current studies indicate that there should be an optimum balance between the van der Waals and total electrostatic interactions for further designing of PKBα allosteric inhibitors.  相似文献   

14.
15.
A promising analytical model for nonlinear dynamic analysis of steel frames is described. This approach is based on an updated Lagrangian formulation in conjunction with force-space, concentrated plasticity. Kinematic strain hardening behavior is modelled by the bounding-surface concept. The analysis is implemented in a highly interactive, adaptive fashion using computer graphics and a super-minicomputer. Several examples illustrate the effectiveness of the analysis strategy described.  相似文献   

16.
Roscovitine derivatives are potent inhibitors of cyclin-dependent kinase 5 (CDK5), but they exhibit different activities, which has not been understood clearly up to now. On the other hand, the task of drug design is difficult because of the fuzzy binding mechanism. In this context, the methods of molecular docking, molecular dynamics (MD) simulation, and binding free energy analysis are applied to investigate and reveal the detailed binding mechanism of four roscovitine derivatives with CDK5. The electrostatic and van der Waals interactions of the four inhibitors with CDK5 are analyzed and discussed. The calculated binding free energies in terms of MM-PBSA method are consistent with experimental ranking of inhibitor effectiveness for the four inhibitors. The hydrogen bonds of the inhibitors with Cys83 and Lys33 can stabilize the inhibitors in binding sites. The van der Waals interactions, especially the pivotal contacts with Ile10 and Leu133 have larger contributions to the binding free energy and play critical roles in distinguishing the variant bioactivity of four inhibitors. In terms of binding mechanism of the four inhibitors with CDK5 and energy contribution of fragments of each inhibitor, two new CDK5 inhibitors are designed and have stronger inhibitory potency.  相似文献   

17.
Molecular dynamics model is processed by a parallel array type computer PAX, that has an architecture of nearest neighbor meash connection of processors. Two parallel schemes, named Lagrangian and Eulerian, are implemented, execution time and efficiency are analyzed and expressed in terms of the basic parameters such as problem size and array size. The Lagrangian scheme realizes high efficiency close to 1, which assures the linear speedup proportional to the size of the processor array. Parallel programming technique is also presented.  相似文献   

18.
We study the water-hexane interface using molecular dynamics (MD) and polarizable charge equilibration (CHEQ) force fields. Bulk densities for TIP4P-FQ water and hexane, 1.0086±0.0002 and 0.6378±0.0001 g/cm(3), demonstrate excellent agreement with experiment. Interfacial width and interfacial tension are consistent with previously reported values. The in-plane component of the dielectric permittivity (?(||)) for water is shown to decrease from 81.7±0.04 to unity, transitioning longitudinally from bulk water to bulk hexane. ?(||) for hexane reaches a maximum in the interface, but this term represents only a small contribution to the total dielectric constant (as expected for a non-polar species). Structurally, net orientations of the molecules arise in the interfacial region such that hexane lies slightly parallel to the interface and water reorients to maximize hydrogen bonding. Interfacial potentials due to contributions of the water and hexane are calculated to be -567.9±0.13 and 198.7±0.01 mV, respectively, giving rise to a total potential in agreement with the range of values reported from previous simulations of similar systems. Potentials of mean force (PMF) calculated for methanol, ethanol, and 1-propanol for the transfer from water to hexane indicate an interfacial free energy minimum, corresponding to the amphiphilic nature of the molecules. The magnitudes of transfer free energies were further characterized from the solvation free energies of alcohols in water and hexane using thermodynamic integration. This analysis shows that solvation free energies for alcohols in hexane are 0.2-0.3 kcal/mol too unfavorable, whereas solvation of alcohols in water is approximately 1 kcal/mol too favorable. For the pure hexane-water interfacial simulations, we observe a monotonic decrease of the water dipole moment to near-vacuum values. This suggests that the electrostatic component of the desolvation free energy is not as severe for polarizable models than for fixed-charge force fields. The implications of such behavior pertain to the modeling of polar and charged solutes in lipidic environments.  相似文献   

19.
Tensor3D is a geometric modeling program with the capacity to simulate and visualize in real-time the deformation, specified through a tensor matrix and applied to triangulated models representing geological bodies. 3D visualization allows the study of deformational processes that are traditionally conducted in 2D, such as simple and pure shears. Besides geometric objects that are immediately available in the program window, the program can read other models from disk, thus being able to import objects created with different open-source or proprietary programs. A strain ellipsoid and a bounding box are simultaneously shown and instantly deformed with the main object. The principal axes of strain are visualized as well to provide graphical information about the orientation of the tensor's normal components. The deformed models can also be saved, retrieved later and deformed again, in order to study different steps of progressive strain, or to make this data available to other programs. The shape of stress ellipsoids and the corresponding Mohr circles defined by any stress tensor can also be represented. The application was written using the Visualization ToolKit, a powerful scientific visualization library in the public domain. This development choice, allied to the use of the Tcl/Tk programming language, which is independent on the host computational platform, makes the program a useful tool for the study of geometric deformations directly in three dimensions in teaching as well as research activities.  相似文献   

20.
A variety of popular molecular dynamics (MD) simulation packages were independently developed in the last decades to reach diverse scientific goals. However, such non-coordinated development of software, force fields, and analysis tools for molecular simulations gave rise to an array of software formats and arbitrary conventions for routine preparation and analysis of simulation input and output data. Different formats and/or parameter definitions are used at each stage of the modeling process despite largely contain redundant information between alternative software tools. Such Babel of languages that cannot be easily and univocally translated one into another poses one of the major technical obstacles to the preparation, translation, and comparison of molecular simulation data that users face on a daily basis. Here, we present the MDWiZ platform, a freely accessed online portal designed to aid the fast and reliable preparation and conversion of file formats that allows researchers to reproduce or generate data from MD simulations using different setups, including force fields and models with different underlying potential forms. The general structure of MDWiZ is presented, the features of version 1.0 are detailed, and an extensive validation based on GROMACS to LAMMPS conversion is presented. We believe that MDWiZ will be largely useful to the molecular dynamics community. Such fast format and force field exchange for a given system allows tailoring the chosen system to a given computer platform and/or taking advantage of a specific capabilities offered by different software engines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号