首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 78 毫秒
1.
掺钽的二氧化钛电容—压敏陶瓷电学性能研究   总被引:7,自引:2,他引:5  
通过对样品I-V特性和势垒高度等参数的测定,研究了钽对二氧化钛压敏电阻电学性能的影响。研究中发现掺入的x(Ta  相似文献   

2.
掺杂对低压ZnO压敏陶瓷材料显微结构及性能的影响   总被引:1,自引:0,他引:1  
本文探讨了多种金属氧化物对ZnO-Bi_2O_3-TiO_2系材料的改性作用和对其微结构的影响,为得到预定性能的材料提供了掺杂方面的实验依据。  相似文献   

3.
采取通用的陶瓷工艺,按配方(摩尔分数)TiO2+0.3%(BaCO3+Bi2O3)+0.075%Ta2O5+x%SiO2,其中x=0.1,0.2,0.3,0.4,0.5,制备试样。经过R-f,C-f和I-V测量,研究了SiO2对(Ba,Bi,Si,Ta)掺杂的TiO2基压敏陶瓷的压敏特性、电容特性及晶粒半导化的影响。结果表明:当x=0.3时,压敏电压最低(E10mA为8V.mm–1),电容量最大(C为30pF,1kHz)及晶粒电阻最小(1.4?)。  相似文献   

4.
低压ZnO压敏电阻器性能的改善   总被引:3,自引:0,他引:3  
制作低压ZnO压敏电阻器的一般方法是添加晶粒助长剂TiO2。这样做虽然可降低梯度电压V1mA/mm,但同时也增大了漏电流IL,降低了元件的稳定性。在掺入TiO2,使V1mA/mm下降的同时,适量掺入硼并在850℃下进行热处理,可改善小电流特性和非线性,减小IL,提高稳定性。  相似文献   

5.
SiO2对TiO2系压敏陶瓷电性能的影响   总被引:13,自引:1,他引:12  
本文主要讨论SiO_2对TiO_2系压敏陶瓷电性能的影响,并从理论上作了深入分析。  相似文献   

6.
研究并分析了Ni3+掺杂和Co2+掺杂对SnO2压敏电阻致密度和电学非线性性能的影响.研究了掺Mn2+对SnO2@Ni 2O3@Nb2O 5压敏材料性能的影响.发现x(MnCO3)为0 10%时,压敏电阻具有最高的视在电场(EB=686 89 V/mm)和最好的电学非线性性能(α=1 2 9).样品的收缩率和致密度变化趋势不一致,这是因为样品的致密度是由收缩率和MnCO3的挥发量两因素共同决定的.  相似文献   

7.
该文在TiO2压敏陶瓷中掺杂CeO2,研究了烧结温度和CeO2掺杂量对TiO2基压敏陶瓷的电学性能的影响。结果表明,烧结温度为1 400℃、CeO2掺杂摩尔分数为1.0%时,TiO2基压敏陶瓷表现出较好的综合电学性能:压敏电压为7.7V/mm,非线性系数为3.8,漏电流为0.1A,且具有优的介电常数和介电损耗。  相似文献   

8.
为了改善TiO2压敏陶瓷材料的电学性能,通过添加少量的纳米TiO2,使其压敏电压有了明显的降低,非线性系数有了明显的提高,并对其原因进行了合理分析.结果表明,随着烧结温度的提高,总趋势是压敏电压下降,非线性系数提高.当添加5%纳米TiO2并在1400℃烧结时,样品显示出较好的压敏特性:VImA=4.66V/mm,α=4.73和εr=1.1 9×104.  相似文献   

9.
采用实验方法研究了纳米粉体对TiO2压敏陶瓷晶界势垒结构的影响.采用扫描电镜测试了样品的显微结构.基于热电子发射理论和样品的电学性能计算了TiO2压敏陶瓷的势垒结构.在室温至320 ℃范围内,测试TiO2压敏陶瓷样品的电阻率ρ.通过样品的lnσ-1/T曲线计算了TiO2压敏陶瓷材料的晶界势垒结构.讨论了显微结构和势垒结构对TiO2压敏陶瓷电学性能的影响.结果表明,合适的纳米TiO2加入量为x=5 mol%.  相似文献   

10.
ZnO陶瓷薄膜的制备及其低压压敏性质   总被引:7,自引:1,他引:6  
利用新型Sol-Gel法在镀有Au底电极的单晶硅片上制备Bi2O3、Sb2O3掺杂的ZnO陶瓷薄膜,先驱体溶液由Bi2O3、Sb2O3掺杂的ZnO纳米粉体均匀分散于含有Zn(CH3COO)2、Bi(NO3)3及Sb2O3的溶胶中制成,薄膜由甩胶法制备,并由400℃预烧、750℃退火。制得的陶瓷薄膜ZnO结晶良好,并存在β-Bi2O3、Zn2Sb3Bi3O14及Zn7Sb2O12相,表现出良好的低压压敏性质,厚约为3μm为ZnO陶瓷薄膜非线性系数α为6.2、压敏电压为5V,漏电流为8μA。  相似文献   

11.
掺锑对二氧化锡压敏电阻性能的影响   总被引:7,自引:0,他引:7  
通过对样品V-I特性和势垒特性的测试和分析,研究了掺锑对二氧化锡压敏电阻性能的影响.snO2@Co2O3基本上不具有电学非线性,掺杂很少量的Sb2O3可明显改善材料的非线性.研究中发现掺杂x(sb2O3)为0.01%的样品具有最高的质量密度(ρ=6.90g/cm3)、最高的视在势垒电场(EB=276V/cm)和最好的电学非线性(a=12.89).提出了SnO2@Co2O3@Sb2O3的晶界缺陷势垒模型.  相似文献   

12.
通过对样品的伏安特性,晶界势垒的测量和分析,研究了Nd2O3对SnO2·Co2O3·Nb2O5压敏电阻瓷电性能的影响。发现掺入x(Nb2O3)为0.050%的样品表现出最好的压敏性质,其压敏电压为460.69 V/mm,密度为6.812 g/cm3,非线性系数为18.7。为了说明电学非线性的起源,提出了SnO2压敏材料的一个缺陷势垒模型。  相似文献   

13.
CeO_2掺杂对Nb-TiO_2系压敏陶瓷电性能的影响   总被引:2,自引:3,他引:2  
在x(CeO2)为0~1.5%的范围内改变其掺杂浓度,研究了CeO2添加剂对TiO2压敏陶瓷电性能的影响。电性能测量和扫描电镜观察的结果表明:在Nb-TiO2系压敏陶瓷中,CeO2的主要作用是促使微观结构的均匀化,与Ti、Si固溶形成第二相,提高非线性,同时第二相的浓度对压敏电压的高低起着决定性作用。当x(CeO2)为0.4%时,可以得到晶粒大小均匀,瓷体结构致密,压敏电压约为15 V/mm及其它综合指标优良的低压压敏电阻。  相似文献   

14.
(Li,Nb)掺杂SnO_2压敏材料的电学非线性研究   总被引:2,自引:0,他引:2  
研究了掺锂对 Sn O2 压敏电阻器性能的影响。研究发现 L i 对 Sn4 的取代能明显提高陶瓷的烧结速度和致密度 ,且能大幅度改善材料的电学非线性性能。掺入 x(L i2 CO3)为 1.0 %的陶瓷样品具有最高的密度 (ρ=6 .77g/ cm3)、最高的介电常数 (ε=185 1)、最低的视在势垒电场 (EB=6 8.86 V/ mm)和最高的非线性常数 (α=9.9)。对比发现 ,Na 由于具有较大的离子粒半径 ,其掺杂改性性能相对较差。提出了 Sn O2 · L i2 CO3· Nb2 O5晶界缺陷势垒模型  相似文献   

15.
稀土Ce对SnO2·Co2O3·Nb2O5压敏性能的影响   总被引:1,自引:0,他引:1  
研究了掺Ce对SnO2·Co2O3·Nb2O5压敏电阻器性能的影响。研究发现Ce4+对Sn4+的取代能明显提高陶瓷的致密度,掺入x(CeO2)为0.05的陶瓷样品具有最高的密度(ρ=6.71g/cm3),最高的视在势垒电场(EB=413.6V/mm),最高的非线性系数(α=13.8),最高的势垒电压和最窄的势垒厚度。为了解释样品电学非线性性质的起源,该文提出了SnO2·Co2O3·Nb2O5·CeO2晶界缺陷势垒模型。同时,对该压敏电阻器进行了等效电路分析。试验测量与等效电路分析结果相符。  相似文献   

16.
研究了 Cu O对 Sn O2 · Mg O· Nb2 O5压敏材料的密度、非线性特性、介电常数的影响。实验发现 ,适当掺杂 Cu O不仅能增大 Sn O2 · Mg O· Nb2 O5材料的致密度 ,而且能提高非线性系数 ,减小漏电流。掺 2 % Cu O(摩尔比 )时 ,Sn O2 · Mg O· Nb2 O5材料的致密度达到理论值的 93% ,非线性系数 α高达 9.5 ,压敏电压 V1 m A高于4 2 3V/ mm。在 2 0~ 2 0 0°C温度范围和 0 .1~ 10 0 0 k Hz频率范围 ,Sn O2 · Cu O· Mg O· Nb2 O5的介电常数变化很小 ,应用晶界缺陷势垒模型 ,对 Sn O2 · Cu O· Mg O· Nb2 O5材料压敏特性进行了解释。  相似文献   

17.
钨掺杂对二氧化钛压敏电阻瓷电性能的影响   总被引:5,自引:3,他引:5  
通过对样品的伏案性质、介电常数以及晶界势垒的测量和分析,研究了WO3对TiO2压敏电阻瓷电性能的影响。研究发现掺入x(WO3)为0.25%的样品表现出最好的压敏性质,其压敏电压为42.5V/mm,非线性系数α达到9.6,以及较高的相对介电常数(εr=7.41×104),是一种具有较好潜力的电容-压敏电阻器。通过不同烧结温度的实验,发现1 350℃是最佳烧结温度。类比ZnO压敏材料的晶界势垒模型,提出了适合TiO2压敏材料的肖特基势垒模型。  相似文献   

18.
研究了掺CoO、Nb2O5、La2O3的SnO2基压敏陶瓷,在25~300℃范围内的电特性。用尼奎斯特图表示了阻抗数据,结果表明:制备的样品有2个时间常数,分别代表两种激活能,一个在低频,一个在高频。这些激活能与晶界氧的吸附及氧与晶粒边界的作用有关,在晶界吸附的O′和O〞作为受主态,有利于形成肖特基势垒。  相似文献   

19.
采用材料梯度化设计思路,将传统电子陶瓷工艺的单层装料一次干压成型工序改进为逐层装料一次干压成型工序。沿着实现ZnO压敏陶瓷低压化的主要途径:减小ZnO压敏电阻器瓷片的厚度和增大ZnO平均晶粒尺寸,在烧结温度1 100℃下,制备出电学性能理想的梯度ZnO低压压敏陶瓷。该陶瓷的压敏电压为8 V/mm,非线性系数为19,漏电流为13μA;其克服了瓷片机械强度劣化及能量耐受能力下降的缺陷。该制备工艺简单,为ZnO压敏电阻器的低压化提供了新方案。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号