首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
An antigen (Ag), CFP-10, found in tissue fluids of tuberculosis (TB) patients may be an ultimate candidate for use as a sensitive TB marker with a sensing method for early simplified diagnosis of TB. In this study, chemical and optical optimizations were carried out using novel immuno-materials for establishment of a self-assembled surface plasmon resonance (SPR) optical immunosensor system for detection of CFP-10, which is valuable for pre-clinical work, prior to conduct of massive clinical observations. For creation of a simple sensing interface, a monoclonal antibody (anti-CFP-10) was immobilized directly on a gold surface, followed by blocking with cystamine. Orientation and accessibility of anti-CFP-10 were assessed by the selective binding of CFP-10. Recent results indicate that the reusability of the sensor chip adopting the cystamine method was found to be preferable to other immobilization methods. A linear relationship was well correlated between SPR angle shift and CFP concentrations in the range from 100 ng mL−1 to 1 μg mL−1. Modification of the SPR chip with antibody provides a simple experimental platform for investigation of isolated proteins under experimental conditions resembling those of their native environment.  相似文献   

2.
In this work, a novel label-free amperometric immunosensor has been constructed for detecting α-1-fetoprotein (AFP) based on nanocomposite of horseradish peroxidase (HRP) labeled carbon nanotubes (CNTs). First, the gold nanoparticles (AuNPs) were electrodeposited on the surface of the glass carbon electrode by electrochemical reduction of gold chloride tetrahydrate (HAuCl4) to immobilize horseradish peroxidase labeled carbon nanotubes (HRP-CNTs). Then HRP-CNTs bioconjugate was immobilized on the surface of the electrodeposited AuNPs layer by the combination of forces (coordination and electrostatic force). Subsequently, it was immersed into gold colloidal nanoparticles (GNPs) solution, which was used to immobilize antibody biomolecules (anti-AFP). Enhanced sensitivity was obtained by using bioconjugates featuring HRP labeled (HRP-CNTs), which had lager specific surface area and good electronic catalysis (current response signal) compared to carbon nanotubes. Under optimized conditions, the linear ranges were from 0.2 to 200 ng mL−1 with a detection limit of 0.067 ng mL−1 (at an S/N of 3). The proposed immunosenor showed good precision, acceptable stability and reproducibility and could be used for the detection AFP in normal human serum, which provided a potential alternative tool for the detection of protein in clinical diagnosis.  相似文献   

3.
A novel label-free electrochemical immunosensor for sensitive detection of kanamycin based on water-soluble graphene sheet (WGS)/prussian blue-chitosan (PB-CTS)/nanoporous gold (NPG) composited film has been reported. PB was selected as an electron transfer mediator, and was modified onto the electrode together with WGS through electrostatic adsorption. Then NPG was immobilized onto the as-prepared film for biomolecules anchoring. The electroactivity of PB was greatly enhanced in the presence of WGS and NPG. It could mainly be ascribed to the fact that the good conductivity of WGS and NPG promoted electron transfer and enhanced the sensitivity. kanamycin antibody, as a model, was immobilized onto the composite film for the detection of kanamycin. Under optimum conditions, the amperometric signal of PB decreased linearly with kanamycin concentration (0.02-14 ng mL−1), a linear calibration plot (y = 1.3817 + 4.7544x, r = 0.9993), resulting in a low limit of detection (6.31 pg mL−1). The novel immunosensor for the detection of kanamycin in real sample with satisfactory results has been proved. In addition, this method would be easily adapted for the detection of other residual antibiotics in animal derived foods.  相似文献   

4.
A novel method to construct amperometric immunosensor for human serum chorionic gonadotrophin (hCG) has been described. In this study, horseradish peroxidase (HRP), Pt nanoparticles and secondary antibody (Ab2) modified MSN (Pt@MSN/HRP/Ab2) was synthesized and the multifunctional MSN was used as label for the preparation of immunosensor. With the hCG primary antibody immobilized onto thionine/graphene modified glassy carbon electrode (GCE) via crosslinking with glutaraldehyde, the electrochemical immunosensor was able to realize a reliable determination of hCG in the range of 0.01-12 ng mL−1 with a detection limit of 7.50 pg mL−1. This immunoassay system has many desirable merits including high sensitivity, accuracy, and little instrumentation requirement. Significantly, the new method may be quite promising, with potentially broad applications for clinical immunoassays.  相似文献   

5.
A novel chemiluminescence sensor for determination deltamethrin was firstly reported based on CdTe quantum dots and deltamethrin imprinted polymers by layer-by-layer assembly modified on the surface of slide glass, whose shape was the same as the bottom of 96 well micro-plate. The binding characteristic of the imprinted polymers to deltamethrin was evaluated by equilibrium binding experiments and the morphology was studied by scanning electronic microscope. Scatchard analysis was carried out to estimate the binding parameters of the imprinted polymers. The water-soluble TGA-capped CdTe quantum dots were prepared. NaHTe was used as the Te precursor for CdTe quantum dots synthesis. Under the optimum conditions, the chemiluminescence intensity had a linear relationship against the concentration of deltamethrin over the range of 0.053-46.5 μg mL−1 with a lower detection limit of 0.018 μg mL−1. The regression equation was ΔI = 2225 + 107c (c: μg mL−1) with a correlation coefficient of 0.9973. The relative standard deviation was 4.7%. The presented method was applied successfully to the determination of deltamethrin in real samples with satisfactory results.  相似文献   

6.
A simple and sensitive method based on square wave voltammetry (SWV) at single-walled carbon nanotube (SWNT) modified edge plane pyrolytic graphite electrode (EPPGE) is proposed for the simultaneous determination of adenine and adenosine-5′-monophosphate (5′-AMP). The modified electrode exhibits remarkable electrocatalytic properties towards adenine and 5′-AMP oxidation with a peak potential of ∼850 and 1165 mV respectively. Linear calibration curves are obtained over the concentration range of 5-100 nM for adenine and 10-100 nM for 5′-AMP with sensitivity of 677 and 476 nA nM−1 for adenine and 5′-AMP respectively. The limit of detection for adenine and 5′-AMP was found to be 37 × 10−10 M and 76 × 10−10 M, respectively. The effect of pH revealed that the oxidation of adenine and 5′-AMP at SWNT modified EPPGE involved equal number of electrons and protons. The modified electrode exhibited high stability and reproducibility.  相似文献   

7.
A novel method for detecting human IgG is reported, which is based on Au/Ag alloy nanocomposites for amplifying surface plasmon resonance response. Au/Ag alloy nanocomposites were characterized in detail by transmission electron microscopy (TEM), UV-vis absorption spectroscopy and X-ray photoelectron spectroscopy (XPS). Covalent immobilization of about 24 nm diameter of Au/Ag alloy nanocomposites on the Au film results in a large shift in resonance wavelength, which is due to the increase of the thickness of the sensing membrane, high dielectric constant of Au/Ag nanoparticles, and electromagnetic coupling between Au/Ag alloy nanocomposites and Au film. The SPR biosensor based on Au/Ag alloy nanocomposites exhibits a satisfactory response for human IgG in the concentration range of 0.15-40.00 μg mL−1. While the biosensor based on Au nanoparticles shows a response in the concentration range of 0.30-20.00 μg mL−1 and the biosensor based on Au film shows a response for human IgG in the concentration range of 1.25-20.00 μg mL−1.  相似文献   

8.
An amperometric glucose biosensor based on a multilayer made by layer-by-layer assembly of single-walled carbon nanotubes modified with glucose oxidase (GOx-SWCNT conjugates) and redox polymer (PVI-Os) on a screen-printed carbon electrode (SPCE) surface was developed. The SPCE surface was functionalized with a cationic polymer by electrodeposition of the PVI-Os, followed by alternating immersions in anionic GOx-SWCNT conjugate solutions and cationic PVI-O solutions. The purpose is to build a multilayer structure which is further stabilized through the electrodeposition of PVI-Os on the multilayer film. The electrochemistry of the layer-by-layer assembly of the GOx-SWCNT conjugate/PVI-Os bilayer was followed by cyclic voltammetry. The resultant glucose biosensor provided stable and reproducible electrocatalytic responses to glucose, and the electrocatalytic current for glucose oxidation was enhanced with an increase in the number of bilayers. The glucose biosensor displayed a wide linear range from 0.5 to 8.0 mM, a high sensitivity of 32 μA mM−1 cm−2, and a response time of less than 5 s. The glucose biosensor proved to be promising amperometric detectors for the flow injection analysis of glucose.  相似文献   

9.
A label-free DNA biosensor for hybridization detection of short DNA species related to the transgenic plants gene fragment of cauliflower mosaic virus (CaMV) 35S promoter was developed in this paper. The nanocomposite containing chitosan (CS) and mutiwalled carbon nanotubes (MWNTs) was first coated on a glassy carbon electrode. Then a highly reactive dialdehyde reagent of glutaraldehyde (GTD) was applied as an arm linker to covalently graft the 5′-amino modified probe DNA to the CS-MWNTs surface via the facile aldehyde-ammonia condensation reaction. The hybridization capacity of the developed biosensor was monitored with electrochemical impedance spectroscopy (EIS) using [Fe(CN)6]3−/4− as an indicating probe, and the experimental results showed that the biosensor had fast hybridization rate and low background interference. A wide dynamic detection range (1.0 × 10−13-5 × 10−10 M) and a low detection limit (8.5 × 10−14 M) were achieved for the complementary sequence. In addition, the hybridization specificity experiments showed that the sensing system can accurately discriminate complementary sequence from mismatch and noncomplementary sequences.  相似文献   

10.
A micro/nanoparticle (μ-NP) bismuth film electrode (BiFE) has been developed for the determination of lead and cadmium by anodic stripping voltammetry (ASV) and trace levels of chromium by adsorptive stripping voltammetry (AdSV). Chromium was detected in a flow cell. Bismuth was electrodeposited on a hydrated aluminum oxide template, which was previously coated on a glassy-carbon (GC) electrode. Then, the template was selectively removed by soaking the electrode in a 0.1 M NaOH solution for 30 min, leaving a dispersed bismuth film covering the electrode surface; such electrodeposits had a particulate appearance, which was observed by scanning electron microscopy (SEM). The voltammetric analyses from a chromium solution on a μ-NPs/BiFE provided a limit of detection (LOD) equal to 0.12 ng L−1 (n = 6) and a slope of 0.27 μC/ng L−1 (R2 = 0.9903). The signals registered were more than 50 times higher than the peaks obtained from a conventional BiFE. The analysis of aqueous solutions of Cd and Pb gave also lower LOD and higher sensitivity against the conventional BiFe experiments.  相似文献   

11.
In this paper, we presented a carbon tetrachloride gas sensor with strong cataluminescence response based on Ag2Se nanomaterial, which was synthesized via the electrodeposition on the surface of Al foil by directly using a non-aqueous dimethyl sulfoxide (DMSO) solution with CH3COOAg and SeCl4. The deposited Ag2Se material was characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). Then, the prepared Ag2Se material along with the Al foil substrate was employed to design the carbon tetrachloride gas sensor. Under the optimized conditions, the present gas sensor exhibited a broad linear range of 0.9-228 μg mL−1, with a limit of detection of 0.3 μg mL−1 (S/N = 3). The proposed gas sensor showed good characteristics with high selectivity, fast response and long lifetime.  相似文献   

12.
Today the water quality of many inland and coastal waters is compromised by cultural eutrophication in consequence of increased human agricultural and industrial activities. Remote sensing is widely applied to monitor the trophic state of these waters. This study investigates the performance of near infrared-red models for the remote estimation of chlorophyll-a concentrations in turbid productive waters and evaluates several near infrared-red models developed within the last 34 years. Three models were calibrated for a dataset with chlorophyll-a concentrations from 0 to 100 mg m−3 and validated for independent and statistically different datasets with chlorophyll-a concentrations from 0 to 100 mg m−3 and 0 to 25 mg m−3 for the spectral bands of the MEdium Resolution Imaging Spectrometer (MERIS) and MODerate resolution Imaging Spectroradiometer (MODIS). The MERIS two-band model estimated chlorophyll-a concentrations slightly more accurately than the more complex models, with mean absolute errors of 2.3 mg m−3 for chlorophyll-a concentrations from 0 to 100 mg m−3 and 1.2 mg m−3 for chlorophyll-a concentrations from 0 to 25 mg m−3. Comparable results from several near infrared-red models with different levels of complexity, calibrated for inland and coastal waters around the world, indicate a high potential for the development of a simple universally applicable near infrared-red algorithm.  相似文献   

13.
4-Nonylphenol (4-NP) was reported to affect the health of wildlife and humans through altering endocrine function. A novel electrochemical sensor for sensitive and fast determination of 4-NP was developed. Titanium oxide (TiO2) nanoparticles and gold nanoparticles (AuNPs) were introduced for the enhancement of electron conduction and sensitivity. 4-NP-imprinted functionalized AuNPs composites with specific binding sites for 4-NP was modified on electrode. The resulting electrodes were characterized by cyclic voltammetry (CV). Rebinding experiments were carried out to determine the specific binding capacity and selective recognition. The linear range was over the range from 4.80 × 10−4 to 9.50 × 10−7 mol L−1, with the detection limit of 3.20 × 10−7 mol L−1 (S/N = 3). The sensor was successfully employed to detect 4-NP in real samples.  相似文献   

14.
Monoclonal antibodies (MAb) have been commonly applied to measure LDL in vivo and to characterize modifications of the lipids and apoprotein of the LDL particles. The electronegative low density lipoprotein (LDL) has an apolipoprotein B-100 modified at oxidized events in vivo. In this work, a novel LDL electrochemical biosensor was developed by adsorption of anti-LDL MAb on an (polyvinyl formal)-gold nanoparticles (PVF-AuNPs)-modified gold electrode. Electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV) were used to characterize the recognition of LDL. The interaction between MAb-LDL leads to a blockage in the electron transfer of the [Fe(CN)6]4−/K4[Fe(CN)6]3− redox couple, which may could result in high change in the electron transfer resistance (RCT) and decrease in the amperometric responses in CV analysis. The compact antibody-antigen complex introduces the insulating layer on the assembled surface, which increases the diameter of the semicircle, resulting in a high RCT, and the charge transferring rate constant κ0 decreases from 18.2 × 10−6 m/s to 4.6 × 10−6 m/s. Our results suggest that the interaction between MAb and lipoprotein can be quantitatively assessed by the modified electrode. The PVF-AuNPs-MAb system exhibited a sensitive response to LDL, which could be used as a biosensor to quantify plasmatic levels of LDL.  相似文献   

15.
A waveguide interferometer based free-chlorine sensing technique has been developed. A polymer film for a specific free chlorine binding was designed, synthesized and applied on the surface of a waveguide. The material is based on cyanuric acid moieties along each repeating unit covalently tethered to poly(norbornene)s. Chlorine sensing was accomplished by measuring the refractive index change of the polymer, as a result of the reaction between cyanuric acid and free chlorine, interferometrically by the evanescent field extended above the waveguide surface. The free chlorine binding to cyanuric acid is reversible and a linear calibration curve from 0.1 to 10 mg L−1 of HOCl concentration was obtained with the level of detection (LOD) and level of quantification (LOQ) of 0.047 and 0.328 mg L−1 of HOCl, respectively. A free chlorine measurement with less interference from combined chlorine than DPD based colorimetric method was developed as a result of the different sensing responses of free and combined chlorine. Free chlorine residual was measured in samples collected from tap water and poultry processing waters by both optical sensor and DPD-based colorimetric method. Good agreement between both methods was observed although the levels for free chlorine measured by the optical sensor are systematically lower than the readings obtained from the DPD method. The difference might be the result of the interference from combined chlorine during the DPD measurement.  相似文献   

16.
In this paper, hierarchically structured NiO nanoflowers were facile synthesized by incorporating a convenient solution process with a subsequent thermal treating process. Their catalytic activity was then electrochemically investigated in detail. The NiO nanoflower modified biosensor exhibits excellent sensing performance for the determination of l-ascorbic acid with a response time less than 8 s, linear range between 0.005 and 3.5 mM, and sensitivity as 220.4 μA mM−1 cm−2. Besides, a high selectivity towards the oxidation of AA in the presence of dopamine (DA) and nitrite was also observed at their maximum physiological concentrations. The good analytical performance, long-term stability, low cost and straightforward fabrication process made the NiO nanomaterials promising for the development of effective electrochemical sensors for a wide range of potential applications in medicine, biotechnology and environmental chemistry.  相似文献   

17.
In this paper it is shown that Winograd’s algorithm for computing convolutions and a fast, prime factor, discrete Fourier transform (DFT) algorithm can be modified to compute Fourier-like transforms of long sequences of 2m − 1 points over GF(2m), for 8 ? m ? 10. These new transform techniques can be used to decode Reed-Solomon (RS) codes of block length 2m − 1. The complexity of this new transform algorithm is reduced substantially from more conventional methods. A computer simulation verifies these new results.  相似文献   

18.
We demonstrate high performance microfuel cells (μFC) operating at room temperature. The smallest μFC has a reaction surface of 0.11 cm2 and has an output power density equal to 22.9 mW cm−2. Methanol and air are supplied using microchannels etched into silicon wafers using microfabrication techniques which can accurately determine the μFC surface and the microchannel dimensions. The insertion of a novel hydrophilic fibrous layer into the anode diffusion layer stack produces 9.25 mW cm−2 for an input fuel flow rate of 550 nL min−1. The benefits of size-scaling and architecture optimization in μFC are demonstrated. Our observations and conclusions are by no means unique to methanol μFC but could be applied to other microfluidic liquid fuel μFC based on, e.g. microbial fuel cells, bio-ethanol and glucose solution.  相似文献   

19.
The primary objective of this work is to explore the photoresponsive molecular recognition directed by fluorine-fluorine interaction. A new kind of fluorine-substituted photoresponsive functional monomer, (4-methacryloyloxy) nonafluoroazobenzene (MANFAB), was designed and synthesized, and a photoresponsive molecularly imprinted polymer containing a fluorine-substituted azobenzene chromophore (MIPF) was then fabricated using MANFAB as the monomer and 2,3,4,5,7,8,9,10-octafluorophenazine (PAF) as the model template. The photoisomerization process of MIPF materials is reversible. The release and uptake of PAF from toluene is photoregulated by alternate irradiation at 315 nm and 440 nm, indicating that photoresponsive molecular recognition directed by fluorine-fluorine interaction is possible. The binding strength of the imprinted receptor sites in MIPF for PAF is 4.67 × 104 M−1. The density of receptor sites in the MIPF material is 1.26 μmol/g-MIPF.  相似文献   

20.
Well-ordered nano-mechanically made Au-cavities array (nAu) is tailored as a functional surface with high density tip-to-tip cavities, adjustable indentation depths, and a number of edges within the nanostructures. In this study, the nAu was fabricated by a physical way and utilized as a characterization tool with the advantage of preventing samples from chemical or residual contaminations. Two types of molecular probe solutions: 5,5′-dithio-bis-(2-nitrobenzoic acid) (DTNB) and Rhodamine 6G (R6G) were evaluated. For DTNB solution, the chemically adsorbed monolayer was formed upon the nAu, which resulted in the effect of surface enhanced Raman scattering (SERS), mainly induced by the combined chemical and electromagnetic effects. Within the range of 1 × 10−23 to 3.2 × 10−22 mole, Raman intensity and the quantity of DTNB molecules exhibited a sharp exponential relationship. For R6G solution within the equivalent nAu and the identical range, the relationship exhibited nearly linear; however, within an extended range of 1 × 10−23 to 3.2 × 10−21 mole, a moderate exponential relationship was obtained. The enhancement factors for detecting DTNB and R6G solutions using the nAu could be optimized to 1.62 × 108 and 4.60 × 107, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号