首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
The relationship between the structure and the microwave dielectric properties of epitaxial Ba0.5Sr0.5TiO3 (BST) films has been investigated. Single-phase BST films (40-160 nm) have been deposited onto (100) MgO substrates by pulsed laser deposition. As-deposited films show a significant tetragonal distortion. The in-plane lattice parameters (a) are always larger than the surface normal lattice parameters (c). The tetragonal distortion depends on the thickness of the films and the post-deposition annealing conditions. Films annealed at 900 °C show less tetragonal distortion than the as-deposited film and the films annealed at higher temperatures. The distortion in the film is due to stress caused by the lattice mismatch and thermal expansion coefficient differences between the film and the substrate. The dielectric constant and its change with dc bias voltage of BST films on MgO at microwave frequencies increase with increasing annealing temperature from 900 °C to 1200 °C, which corresponds to an increase in the tetragonal distortion.  相似文献   

2.
BaTiO3 thin films were deposited by pulsed laser deposition on Pt–Si at different laser pulse repetition frequencies. X-ray diffraction spectra show that preferred oriented films can be grown by adjusting the pulse repetition frequency. Enhanced dielectric and ferroelectric properties obtained in films deposited at 1 Hz is attributed to preferred orientation, low strain and homogeneous grain distribution. The films deposited at 1 Hz show an impressive remanent polarization of 21.4 μC/cm2 with a coercive field of 70.0 kV/cm. The shift in Curie temperature, which stems from changing the laser pulse repetition frequency, is associated with the strain state in the film.  相似文献   

3.
We report a method for producing BST films with consistently high figures of merit for tunable microwave applications. (Ba1-x,Srx)TiO3 (x=0.4, target doped with 1% W) thin films have been deposited using pulsed laser deposition onto (100)MgO substrates. Films were deposited at low partial pressures of oxygen (50 mTorr) at a substrate temperature of 730 °C. An analysis of the X-ray diffraction data indicates that the film has a nearly cubic structure, with the overall lattice parameter enlarged relative to the bulk material due to the presence of oxygen vacancies. A post-deposition anneal of the film in flowing oxygen (1000 °C for 6 h) resulted in a decrease in the lattice parameter while remaining nearly cubic. An analysis of the microwave dielectric properties (1–20 GHz) showed that the annealed film exhibited about 10% tunability for an applied bias field of 67 kV/cm with a dielectric Q(1/tan)>600. Investigation of the films by time-resolved confocal scanning optical microscopy (CSOM) has revealed that there is an out-of-plane polarization at zero applied field (EDC=0). The results show that the paraelectric response is relatively insensitive to applied field, while the ferroelectric response is correlated with the growth of in-plane nanodomains. We find these results to be consistent with a large number of studies that show that strain-relief is of paramount importance if ferroelectric films are to be developed as microwave circuit components. PACS 81.15.Fg; 85.50.-n  相似文献   

4.
Thin films of 0.7Pb(Mg1/3Nb2/3)O3–0.3PbTiO3 (PMN-PT) have been grown on Ir/MgO buffered Si(100) substrates at different substrate temperatures by pulsed laser deposition. Crystalline phases as well as preferred orientations in the PMN-PT films were investigated by X-ray diffraction analysis (XRD). The microstructure, dielectric and ferroelectric properties of PMN-PT film prepared at 650 °C were studied. The results show that the film prepared at 650 °C exhibits pure perovskite phase and single c-axis orientation. The dielectric constant and dissipation factor of the single c-axis oriented film are 1000 and 0.04 at a frequency of 1 kHz, while the remnant polarization and coercive field are about 13.0 μC/cm2 and 100 kV/cm under an electric field of 480 kV/cm, respectively. PACS 81.15.Fg; 77.80.-e; 77. 22.Ej; 77.55.+f; 85.50.Gk  相似文献   

5.
《Current Applied Physics》2020,20(6):751-754
Excellent dielectric frequency, bias, and temperature stability of bismuth silicate (Bi2SiO5, BSO) thin films with a low dielectric loss has been obtained in this study. The thin films were prepared on Pt/Ti/SiO2/Si substrates by a chemical solution deposition method at a relatively low annealing temperature of 500 °C. The BSO films have a preferred growth along (200) orientation with dense fine-grained surface morphology. The dielectric constant and dielectric loss of the thin film annealed at 500 °C are 57 and 0.01, respectively, at 100 kHz, with little change between 1 kHz and 100 kHz and in the bias electric field range between −250 kV/cm and 250 kV/cm, indicating that the thin film exhibits a low dielectric loss as well as excellent frequency and bias field stability. The dielectric-temperature measurements confirmed that the BSO thin film annealed at 500 °C also has good temperature stability between 150 K and 450 K. Our results suggest that the BSO thin films have potential applications in the next-generation integrated capacitors.  相似文献   

6.
Reactively rf-sputtered Bi2O3-ZnO-Nb2O5 (BZN) thin films were prepared on Pt(111)/TiO2/SiO2/Si with substrate heating. The effects of substrate heating on the structures, morphologies, dielectric properties, and voltage-tunable dielectric properties of the films were investigated. With heating, the BZN thin films could be deposited in crystalline form as the cubic pyrochlore phase. The amounts of secondary phases, such as zinc niobate and bismuth niobate, depended on the substrate temperature. The more compounding of the BZN crystalline phase proceeded at deposition, the less formation of secondary phases and stoichiometric change occurred after post-annealing. Therefore, improvement of the dielectric constant and tunability of thin films by grain-size enlargement might be possible with proper substrate heating and post-annealing. The BZN thin films sputtered with a substrate temperature of 550 °C and annealed at 800 °C showed a maximum tunability of 26.5% at a dc bias field of 1000 kV/cm and measurement frequency of 1 MHz. PACS 81.15.Cd; 77.55.+f; 77.84.Dy; 81.40.Tv  相似文献   

7.
We report on the deposition of SrBi2Nb2O9 and Sr1-xNaxBi2-xTexNb2O9 ferroelectric thin films on Pt/TiO2/SiO2/(100)Si substrates using the pulsed laser deposition technique. Deposition on substrates heated to 600-700 °C produces {11l} film texture and dense films with grain sizes up to about 500 nm. The recrystallization at 700 °C of amorphous films deposited at lower temperatures enhances the contribution of the {100} and {010} orientations. These films show smaller grain size, namely 50-100 nm. {11l}-oriented Sr1-xNaxBi2-xTexNb2O9 films have remnant polarization Prۆ 7C/cm2, a coercive field Ec䏐 kV/cm and dielectric constant, )𪓴. The low value of Pr is probably related to the low fraction of grains with the ferroelectric axis in the direction of the applied field, E. The recrystallized films have more grains with the ferroelectric axis parallel to E; however, they have a low resistivity which so far has prevented electrical characterization.  相似文献   

8.
Ba(Zr0.2Ti0.8)O3 (BZT) thin films were deposited on Pt(111)/Ti/SiO2/Si(100) substrates by a pulsed laser deposition process. The BZT thin films directly grown on annealed and un-annealed Pt/Ti/SiO2/Si substrates exhibited random and high (100) orientations, respectively. The dielectric constant of a 400-nm-thick BZT film with (100) orientation was 331, which was higher than that of a BZT film with random orientation (∼236). This result is attributed to the fact that the polar axis of the (100)-oriented films was more tilted away from the normal to the film surface than that of the randomly oriented films. Also, the tunabilities of BZT thin films with random and (100) orientations were ∼50% and ∼59% at an applied field of 400 kV/cm, respectively. Improved tunability has been attributed to the (100) texture of the film leading to an enhancement of the in-plane-oriented polar axis. PACS 77.22.-d; 77.55.+f; 77.80.-e; 77.84.-s  相似文献   

9.
CoFe2O4 (CFO) thin film with highly (111)-preferential orientation was first deposited on the silicon substrate by a pulsed-laser deposition, and then Pb(Zr0.52Ti0.48)O3 (PZT) layers were deposited with different oxygen pressures to form the bilayer CFO/PZT nanocomposite thin films. X-ray diffraction showed that the PZT preferential orientation was strongly dependant on the oxygen pressure. The smooth film surface was obtained after depositing the CFO and PZT layers. The bilayer thin films exhibit good ferromagnetic and ferroelectric properties, and a low leakage current density of 0.004 μA/cm2 at 50 kV/cm. The leakage current density curves show loops for the electric polarized field when the electric field reverses. PACS 77.84.Lf; 75.80+q; 81.05.Zx; 81.15.Fg  相似文献   

10.
The Bi2O3-ZnO-Nb2O5 (BZN) cubic pyrochlore thin films were prepared on Pt/TiO2/SiO2/Si(1 0 0) substrates by using pulsed laser deposition process. The oxygen pressure was varied in the range of 5-50 Pa to investigate its effect on the structure and dielectric properties of BZN thin films. It is found that oxygen pressure during deposition plays an important role on structure and other properties of BZN films. The BZN films deposited at temperature of 650 °C and at O2 pressure of 5 Pa have an amorphous BZN and Nb2O5 phases but exhibits a cubic pyrochlore structure with a preferential (2 2 2) orientation when the oxygen pressure increases to 10 Pa. Dielectric constant and loss tangent of the films deposited at 10 Pa are 185 and 0.0008 at 10 kHz, respectively. The dielectric tunability is about 10% at a dc bias field of 0.9 MV/cm.  相似文献   

11.
The structural and the microwave dielectric properties of BaxSr(1-x)TiO3 films (BST) with x=0.5, 0.6 and 0.7, containing 1 mol % W have been investigated. The films were grown by pulsed-laser deposition on MgO (001) substrates at a temperature of 720 °C in an oxygen pressure from 3 to 500 mTorr. The film structures were determined by X-ray diffraction. The lattice parameters were fitted to a tetragonal distortion of a cubic lattice. The out-of-plane lattice parameter (c) was calculated from the position of the (004) reflection. Using c, the in-plane lattice parameter, a, was calculated from the position of the (024) and (224) reflections. A deviation in the calculated values for a, beyond the systematic error, was found in the in-plane lattice parameter, suggesting an in-plane orthorhombic distortion (a, a’). Films with x=0.7 showed a minimum in-plane distortion due to a better lattice match with the substrate. The ratio of the in-plane and out-of-plane lattice parameters was calculated as a measure of the lattice distortion (a/c and a’/c). The dielectric properties of the films deposited were measured at room temperature at 2 GHz using gap capacitors fabricated on top of the dielectric film. For all Ba/Sr ratios investigated in the W-doped material, the dielectric Q (1/cosδ) was observed to be insensitive to the oxygen deposition pressure. A peak in the change in the dielectric constant, as a function of an applied electric field (0–80 kV/cm), was observed for films deposited in 50 mTorr of oxygen. The largest K-factor, K=(ε(0)-ε(V )/ε(0)×Q(0)), for films deposited from a BST x=0.6 (1 mol % W-doped) target was observed in the film that had a minimum in-plane strain, where a∼a’ and c was greater than a and a’. Received: 4 July 2002 / Accepted: 5 July 2002 / Published online: 17 December 2002 RID="*" ID="*"Permanent address: Nuclear Research Center–Negev, P.O. Box 9001 Beer-Sheva, Israel RID="**" ID="**"Corresponding author. Fax: +1-202/767-5301, E-mail: horwitz@ccsalpha3.nrl.navy.mil  相似文献   

12.
杨天应  蒋书文  李汝冠  姜斌 《中国物理 B》2012,21(10):106801-106801
Tunable and switchable Ba 0.5 Sr 0.5 TiO 3 film bulk acoustic resonators(FBARs) based on SiO 2 /Mo Bragg reflectors are explored,which can withstand high temperature for the deposition of Ba x Sr 1 x TiO 3(BST) films at 800 C.The dc bias-dependent resonance may be attributed to the piezoelectricity of the BST film induced by an electrostrictive effect.The series resonant frequency is strongly dc bias-dependent and shifts downwards with dc bias increasing,while the parallel resonant frequency is only weakly dc bias-dependent and slightly shifts upwards at low dc bias( 45 V) while downwards at higher dc bias.The calculated relative tunability of shifts at series resonance frequency is around 2.3% and the electromechanical coupling coefficient is up to approximately 8.09% at 60-V dc bias,which can be comparable to AlN FBARs.This suggests that a high-quality tunable BST FBAR device can be achieved through the use of molybdenum(Mo) as the high acoustic impedance layer in a Bragg reflector,which not only provides excellent acoustic isolation from the substrate,but also improves the crystallinity of BST films withstanding higher deposition temperature.  相似文献   

13.
Coplanar Phase Shifters Based on Ferroelectric Thin Films   总被引:2,自引:0,他引:2  
Barium strontium titanate (Ba0.6Sr0.4TiO3, short for BST) thin films were prepared by RF-magnetron sputtering. The dielectric tunability, loss tangent, remanent polarization (2Pr) and coercive electric field (Ec) of the BST films are respectively 29.5%, 0.013, 2.29 μC/cm2 and 22.27 kV/cm at 1 kHz and 20 V. The designed coplanar waveguide (CPW) phase shifter consists of 56 same sections. It is shown that the fabricated lines of electrodes are smooth and the widths at the tip of bottom electrodes are about 5 μm. At the central frequency of 28 GHz and a bias voltage of 20 V, the figure of merit is approximately 13°/dB.  相似文献   

14.
The dielectric properties of Ba0.6Sr0.4TiO3 (BST)/MgTiO3 (MT) composite thin films deposited on Pt(1 1 1)/Ti/SiO2/Si(1 0 0) substrates by the sol–gel method were investigated. The X-ray pattern analysis indicates that the thin films exhibit good crystalline quality with perovskite phase and that insertion of MT layer does not obviously affect the phase structure of BST thin films. The characterization of dielectric properties demonstrates that configuration of BST/MT/BST thin films is an effective approach to obtain low dielectric loss and dielectric tunability of BST thin films. At room temperature, the tunability of pure BST60 films and BST/MT (15 nm)/BST composite thin films is 47% and 36%, respectively, at the frequency of 1 MHz with an applied electric field of 400 kV/cm. For BST/MT/BST composite thin films, considerable reduction in the dielectric loss values is observed, which renders them attractive for tunable microwave device applications.  相似文献   

15.
Films of La0.5Sr0.5CoO3 (LSCO) have been deposited on specially treated TiO2-terminated (001) SrTiO3 substrate surfaces and on macroporous polycrystalline !-Al2O3 substrates, having a mean pore diameter of 80 nm, by pulsed laser deposition. The films deposited on SrTiO3 are good conducting, (001) textured, and exceptionally smooth (1-2 Å for 100 nm thick films). LSCO films deposited on porous !-Al2O3 are polycrystalline and exhibit good crystallographic and electrical properties despite the large substrate roughness and the differences in lattice parameters and crystal structure between the film and the substrate. Different growth modes have been observed on the porous !-Al2O3 substrates depending on the oxygen pressure during film deposition. Films grown at an oxygen pressure of 10-1 mbar are macroporous, whereas films grown at 10-2 mbar completely cover the substrate pores. In the latter case, strain effects lead to film cracking.  相似文献   

16.
Oriented crystalline Pb(ZrxTi1-x)O3 (x=0.53) (PZT) thin films were deposited on metallized glass substrates by pulsed laser deposition (1060-nm wavelength Nd:YAG laser light, 10-ns pulse duration, 10-Hz repetition rate, 0.35-J/pulse and 25-J/cm2 laser fluence), from a commercial target at substrate temperatures in the range 380-400 °C. Thin films of 1-3 7m were grown on Au(111)/ Pt/NiCr/glass substrates with a rate of about 1 Å/pulse on an area of 1 cm2. The deposited PZT films with perovskite structure were oriented along the (111) direction, as was revealed from X-ray diffraction spectra. Fourier transform infrared spectroscopy (FTIR) was performed on different PZT films so that their vibrational modes could be determined. Piezoelectric d33 coefficients up to 30 pC/N were obtained on as-deposited films. Ferroelectric hysteresis loops at 100 Hz revealed a remanent polarization of 20 7C/cm2 and a coercive field of 100 kV/cm.  相似文献   

17.
Ba0.5Sr0.5TiO3 (BST) thin films were deposited on copper foils via sol-gel method with La2O3 as a buffer layer. The films were processed in almost inert atmosphere so that the substrate oxidation was avoided while allowing the perovskite film phase to crystallize. The existence of a La2O3 buffer layer between the BST thin film and Cu foil improved the dielectric constant and reduced the leakage current density of the BST thin film. Meanwhile, the BST thin film exhibited ferroelectric character at room temperature, which was contrast to the para-electric behavior of the film without the buffer layer. Effects of La2O3 buffer layer on the crystallizability and microstructure of BST thin films were also investigated.  相似文献   

18.
Sol–gel deposition of highly oriented Ba0.5Sr0.5TiO3:MgO composite thin films has shown desirable dielectric constant reduction and higher figure of merit for phase-shifter applications. In this multilayer configuration, MgO distributed homogeneously through the Ba0.5Sr0.5TiO3 (BST50) matrix, and it helped in tailoring the dielectric constant and reducing the loss tangent significantly. In the present study, the high-frequency dielectric behavior of the films has been evaluated by fabricating an eight-element coupled microstrip phase shifter and measuring the degree of phase shift and insertion loss as a function of applied voltage at room temperature. An increase in phase-shifter figure of merit (degree of phase shift per dB insertion loss) from 28°/dB for pure BST50 to 71°/dB for a BST50:MgO film (at 14 GHz and 333 kV/cm) has been observed. PACS 77.55.+f; 81.20.Fw; 73.40.-c; 85.50.-n  相似文献   

19.
Tunable and switchable Ba 0.5 Sr 0.5 TiO 3 film bulk acoustic resonators(FBARs) based on SiO 2 /Mo Bragg reflectors are explored,which can withstand high temperature for the deposition of Ba x Sr 1 x TiO 3(BST) films at 800 C.The dc bias-dependent resonance may be attributed to the piezoelectricity of the BST film induced by an electrostrictive effect.The series resonant frequency is strongly dc bias-dependent and shifts downwards with dc bias increasing,while the parallel resonant frequency is only weakly dc bias-dependent and slightly shifts upwards at low dc bias(< 45 V) while downwards at higher dc bias.The calculated relative tunability of shifts at series resonance frequency is around 2.3% and the electromechanical coupling coefficient is up to approximately 8.09% at 60-V dc bias,which can be comparable to AlN FBARs.This suggests that a high-quality tunable BST FBAR device can be achieved through the use of molybdenum(Mo) as the high acoustic impedance layer in a Bragg reflector,which not only provides excellent acoustic isolation from the substrate,but also improves the crystallinity of BST films withstanding higher deposition temperature.  相似文献   

20.
Compositionally graded (Ba1-xSrx)TiO3 (BST) thin films, with x decreasing from 0.25 to 0.0, were deposited on Pt(111)/Ti/SiO2/Si(100) substrates by pulsed-laser ablation at 600 °C and under ambient oxygen pressures ranging from 50 to 400 mTorr. The influence of the ambient gas pressure on the preferred orientation, microstructures, and dielectric properties of compositionally graded BST films was investigated by X-ray diffraction, scanning electron microscopy, and dielectric frequency spectra, respectively. As the ambient oxygen pressure was increased, the preferred orientation evolved in the order: (100)+(110)(110)+(111) random orientation, and the surface roughness of the graded BST films also increased. The graded BST films deposited at high ambient oxygen pressures (300400 mTorr) exhibited a grainy structure with polycrystalline grains throughout the film thickness, whereas the graded films deposited at low ambient oxygen pressures (50200 mTorr) possessed a columnar structure. The evolution of the microstructure was ascribed to the different physical and chemical properties of the species that were incident onto the substrates at the various oxygen pressures. The dielectric properties of the graded BST films were dependent upon the ambient oxygen pressures. The graded BST films deposited at 200 mTorr exhibited the highest dielectric constant. PACS 77.55.+f; 77.22.Ch; 81.15.Fg  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号