首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 437 毫秒
1.
冀汶莉  刘洲  邢海花 《农业机械学报》2024,55(1):212-222,293
针对已有杂草识别模型对复杂农田环境下多种目标杂草的识别率低、模型内存占用量大、参数多、识别速度慢等问题,提出了基于YOLO v5的轻量化杂草识别方法。利用带色彩恢复的多尺度视网膜(Multi-scale retinex with color restoration,MSRCR)增强算法对部分图像数据进行预处理,提高边缘细节模糊的图像清晰度,降低图像中的阴影干扰。使用轻量级网络PP-LCNet重置了识别模型中的特征提取网络,减少模型参数量。采用Ghost卷积模块轻量化特征融合网络,进一步降低计算量。为了弥补轻量化造成的模型性能损耗,在特征融合网络末端添加基于标准化的注意力模块(Normalization-based attention module,NAM),增强模型对杂草和玉米幼苗的特征提取能力。此外,通过优化主干网络注意力机制的激活函数来提高模型的非线性拟合能力。在自建数据集上进行实验,实验结果显示,与当前主流目标检测算法YOLO v5s以及成熟的轻量化目标检测算法MobileNet v3-YOLO v5s、ShuffleNet v2-YOLO v5s比较,轻量化后杂草识别模型内存占用量为6.23MB,分别缩小54.5%、12%和18%;平均精度均值(Mean average precision,mAP)为97.8%,分别提高1.3、5.1、4.4个百分点。单幅图像检测时间为118.1ms,达到了轻量化要求。在保持较高模型识别精度的同时大幅降低了模型复杂度,可为采用资源有限的移动端设备进行农田杂草识别提供技术支持。  相似文献   

2.
奶牛体况评分是评价奶牛产能与体态健康的重要指标。目前,随着现代化牧场的发展,智能检测技术已被应用于奶牛精准养殖中。针对目前检测算法的参数量多、计算量大等问题,以YOLO v5s为基础,提出了一种改进的轻量级奶牛体况评分模型(YOLO-MCE)。首先,通过2D摄像机在奶牛挤奶通道处采集奶牛尾部图像并构建奶牛BCS数据集。其次,在MobileNetV3网络中融入坐标注意力机制(Coordinate attention, CA)构建M3CA网络。将YOLO v5s的主干网络替换为M3CA网络,在降低模型复杂度的同时,使得网络特征提取时更关注于牛尾区域的位置和空间信息,从而提高了运动模糊场景下的检测精度。YOLO v5s预测层采用EIoU Loss损失函数,优化了目标边界框回归收敛速度,生成定位精准的预测边界框,进而提高了模型检测精度。试验结果表明,改进的YOLO v5s模型的检测精度为93.4%,召回率为85.5%,mAP@0.5为91.4%,计算量为2.0×109,模型内存占用量仅为2.28 MB。相较原始YOLO v5s模型,其计算量降低87.3%,模型内存占用量减...  相似文献   

3.
黄瓜霜霉病由古巴假霜霉病菌孢子通过侵染引起,严重影响了黄瓜的品质和产量;病菌孢子数量与病情严重度相关,因此建立快速、简便和高效的病菌孢子定量检测方法,实现黄瓜霜霉病防治关口前移。基于YOLO v5模型提出了一种基于Faster-NAM-YOLO的黄瓜霜霉病菌孢子定量检测模型,该模型首先提出了一种特征提取模块C3_Faster,使用C3_Faster替换YOLO v5中的C3模块,有效降低了模型参数计算量和模型深度,提升了对黄瓜霜霉病菌孢子检测速度和精度;其次在主干网络中加入了NAM注意力模块,通过应用权重稀疏性惩罚抑制不显著权重,进而提高模型的特征提取能力和计算效率;最后实现了对黄瓜霜霉病菌孢子的定量检测。实验结果表明,Faster-NAM-YOLO模型在测试集上mAP@0.5和mAP@0.5:0.95分别达到95.80%和60.90%,对比原始YOLO v5模型分别提升1.80、1.20个百分点,较原始YOLO v5模型内存占用量和每秒浮点运算次数分别减少5.27 MB和1.49×1010;通过与YOLO v3、THP-YOLO v5、YOLO v7、YOLO ...  相似文献   

4.
为了解决裂纹皮蛋分选中存在的效率低、人力成本高等问题,提出了一种基于改进YOLO v5的皮蛋裂纹在线检测方法。使用EfficientViT网络替换主干特征提取网络,并采用迁移学习对网络进行训练,分别得到YOLO v5n_EfficientViTb0和YOLO v5s_EfficientViTb1两个模型。YOLO v5n_EfficientViTb0为轻量化模型,相较于改进前参数量减少14.8%,浮点数计算量减少26.8%;YOLO v5s_EfficientViTb1为高精度检测模型,平均精度均值为87.8%。采用GradCAM++对模型可视化分析,得出改进模型减少了对背景区域的关注度,证明了改进模型的有效性。设计了视频帧的目标框匹配算法,实现了视频中皮蛋的目标追踪,依据皮蛋的检测序列实现了对皮蛋的定位和裂纹与否的判别。轻量化模型的判别准确率为92.0%,高精度模型的判别准确率为94.3%。研究结果表明,改进得到的轻量化模型为运算能力较差的皮蛋裂纹在线检测装备提供了解决方案,改进得到的高精度模型为生产要求更高的皮蛋裂纹在线检测装备提供了技术支持。  相似文献   

5.
刘志军 《南方农机》2023,(23):68-73
【目的】解决麦穗检测中麦穗之间相互遮挡、麦穗在图像中难以检测和不同环境造成目标模糊等情况导致麦穗检测精度低的问题。【方法】笔者提出一种基于改进YOLOv5s的算法,通过将数据集同时进行离线增强和在线增强,再将YOLOv5s的骨干网络进行改进,增添具有注意力机制的transformer模块,强化主干网络的全局特征信息提取能力,neck结构由原来的PAFPN改为具有双向加强融合的BiFPN特征融合网络,进行多尺度的特征融合。最后,在head部分使用EIoU-NMS来替代NMS,提高对遮挡麦穗的识别度。【结果】相比于其他改进单一结构的YOLOv5s模型,此综合性改进模型具有更好的检测效果,使mAP@0.5:0.95提高了1.4%,改进的算法比原始YOLOv5s算法的mAP@0.5提高了1.8%。【结论】使用离线增强和在线增强的方式可以使模型的精度有所提升;该模型的改进有效增强了麦穗识别过程中特征融合的效率,提高了麦穗检测的效果,能够为后续相关模型的改进升级提供参考。  相似文献   

6.
花椒树产果量大,枝干纵横交错,树叶茂密,给花椒的自动化采摘带来了困难。因此,本文设计一种基于改进YOLO v5的复杂环境下花椒簇的快速识别与定位方法。通过在主干提取网络CSPDarknet的CSPLayer层和Neck的上采样之后增加高效通道注意力ECA(Efficient channel attention)来简化CSPLayer层的计算量,提升了特征提取能力。同时在下采样层增加协同注意力机制CA(Coordinate attention),减少下采样过程中信息的损失,强化特征空间信息,配合热力图(Grad-CAM)和点云深度图,来完成花椒簇的空间定位。测试结果表明,与原YOLO v5相比较,改进的网络将残差计算减少至1次,保证了模型轻量化,提升了效率。同帧数区间下,改进后的网络精度为96.27%,对比3个同类特征提取网络YOLO v5、YOLO v5-tiny、Faster R-CNN,改进后网络精确度P分别提升5.37、3.35、15.37个百分点,连株花椒簇的分离识别能力也有较大提升。实验结果表明,自然环境下系统平均识别率为81.60%、漏检率为18.39%,能够满足花椒簇识别...  相似文献   

7.
针对黄花传统人工识别效率低,辨识标准不统一的问题,提出基于轻量化和高效层聚合过渡网络的黄花成熟度识别方法LSEB YOLO v7。首先,引入轻量化卷积对高效层聚合网络和过渡模块进行轻量化处理,减少模型计算量。其次,在特征提取与特征融合网络之间增加通道注意力机制,提升模型检测性能。最后,在特征融合网络中,优化通道信息融合方式,使用双向特征金字塔网络替换Concatenate,增加信息融合通道,持续提升模型性能。实验结果表明:与原始模型相比,在黄花成熟度检测中,改进后的LSEB YOLO v7模型参数量和浮点运算量分别减少约2.0×106和7.7×109。训练时长由8.025 h降低至7.746 h,模型体积压缩约4 MB。同时,训练精确率和召回率分别提升约0.64个百分点和0.14个百分点,mAP@0.5和mAP@0.5:0.95分别提升约1.84个百分点和1.02个百分点。此外,调和均值性能保持不变,均为84.00%。LSEB YOLO v7算法可均衡模型复杂性与性能,为黄花成熟度检测和智能化采摘设备提供技术支持。  相似文献   

8.
为提高草莓的总产量,合理监控和防治草莓病害是有效的手段,提出一种基于改进YOLOv5的草莓病害识别算法。该检测算法以CSPDarknet作为主干特征提取网络,能够有效提高模型的性能和训练效率,并使用EIOU Loss损失函数与K-means聚类算法,来提高模型的收敛速度。同时,在模型中增加CBAM注意力机制来提高检测精度,最终构建基于改进YOLOv5的CBAM-YOLOv5l算法。试验结果表明,改进后的模型较之原始模型,在检测精度上有所提升且依然能保证高效的检测速度。另外,经过训练的CBAM-YOLOv5l目标检测算法在验证集下的总体平均精度达到96.52%,平均检测时间为27.52 ms,对比YOLOv4、YOLOv4-Tiny、Faster_R-CNN等目标检测算法,该检测算法在精度上具有更大的优势,在实际的草莓果园环境中具有良好的鲁棒性与实时性,可以满足草莓病害识别精度的需求,能够可靠地提示草莓健康状态,从而及时地实现精准施药等保护措施。  相似文献   

9.
曾俊  陈仁凡  邹腾跃 《南方农机》2023,(24):24-27+41
【目的】解决自然环境下不同成熟度桃子快速准确检测的问题,课题组提出一种基于改进YOLOv5s的目标检测算法YOLO-Faster。【方法】使用YOLOv5s网络模型作为基础网络,将主干特征提取网络替换为FasterNet,使模型轻量化,并在主干和颈部之间增加串联的CBAM卷积注意力模块和常规卷积块,增强对图像重要特征的捕捉与表达,同时引入SIoU损失函数缓解预测框与真实框之间方向的不匹配。【结果】改进后模型的m AP为88.6%,与YOLOv5s相比提升1个百分点,模型权重缩减39.4%,浮点运算量降低44.3%,在GPU、CPU上的单张图像平均检测时间分别减少12.6%和24%。此外,本研究将训练好的模型部署到嵌入式设备Jetson Nano上,模型在Jetson Nano上的检测时间比YOLOv5s减少30.4%。【结论】改进后的轻量级模型能够快速准确地检测自然环境下不同成熟度的桃子,可以为桃子采摘机器人的视觉识别系统提供技术支持。  相似文献   

10.
为实现割草机器人在计算资源有限的情况下快速、准确地定位并识别工作环境中的障碍物,提出一种基于滤波器剪枝的改进YOLOv5s深度学习模型的割草机器人工作环境下障碍物的检测方法。首先,将YOLOv5模型中的Bottleneck残差块改为分层残差结构,以更细粒度地表示多尺度特征,同时增加网络感受野;另外,在残差块尾部加入SE模块,用来对特征图重新标定;其次,对改进后的算法进行滤波器剪枝;最后,针对割草机器人工作环境中的常见障碍物建立相关数据集,并使用剪枝后改进YOLOv5s作为深度学习模型进行检测。试验结果表明:改进后的YOLOv5模型大小减少188%,mAP增加0.1%。对改进YOLOv5模型进行剪枝后,比原YOLOv5模型计算量降低36.6%,模型大小降低333%,推理速度减少1.9 ms。剪枝后本文模型的mAP值分别比YOLOv4,YOLOv4-tiny,YOLOv3,YOLOv3-tiny高1.3%,9.5%,5.8%,22.1%。  相似文献   

11.
基于改进YOLOX的自然环境中火龙果检测方法   总被引:1,自引:0,他引:1  
自然环境下果实的精准检测是火龙果采摘机器人执行采摘作业的先决条件。为提高自然环境下果实识别的精确性、鲁棒性和检测效率,本研究对YOLOX(You Only Look Once X)网络进行改进,提出了一种含有注意力模块的目标检测方法。为便于在嵌入式设备上部署,本方法以YOLOX-Nano网络为基准,将卷积注意力模块(Convolutional Block Attention Module,CBAM)添加到YOLOX-Nano的主干特征提取网络中,通过为主干网络提取到不同尺度的特征层分配权重系数来学习不同通道间特征的相关性,加强网络深层信息的传递,降低自然环境背景下对火龙果识别的干扰。对该方法进行性能评估和对比试验,经过训练后,该火龙果目标检测网络在测试集的AP0.5值为98.9%,AP0.5:0.95的值为72.4%。在相同试验条件下对比其它YOLO网络模型,该方法平均检测精度分别超越YOLOv3、YOLOv4-Tiny和YOLOv5-S模型26.2%、9.8%和7.9%。最后对不同分辨率的火龙果果园自然环境下采集的视频进行实时测试。试验结果表明,本研究提出的改进YOLOX-Nano目标检测方法,每帧平均检测时间为21.72 ms,F1值为0.99,模型大小仅3.76 MB,检测速度、检测精度和模型大小满足自然环境下火龙果采摘的技术要求。  相似文献   

12.
针对不同光照,遮挡重叠,大视场等复杂环境下,自动采摘机器人无法快速准确地识别果蔬目标的问题,提出一种用于复杂环境下果蔬检测的改进YOLOv5(You Only Look Once v5)算法。首先,在主干网络Backbone中的CBL模块中嵌入卷积注意力机制(Convolutional Block Attention Module, CBAM),提高目标特征的提取能力。其次,引入完全交并比非极大抑制算法(Complete IOU Non-maximum suppression, CIOU-NMS),考虑长宽边长真实差,提高回归精度。最后,用加权双向特征金字塔网络(Bidirectional Feature Pyramid Network, BiFPN)替换原始YOLOv5的路径聚合网络(PANet),融合多尺度特征提高识别精度和准确率。以苹果为例进行试验,结果表明:改进YOLOv5算法精准率为94.7%,召回率为87%,平均精度为92.5%,相比于原始YOLOv5算法AP提高3.5%,在GPU下的检测时间为11 ms,可以实现复杂情况下的果蔬快速准确识别。  相似文献   

13.
针对深层神经网络模型部署到番茄串采摘机器人,存在运行速度慢,对目标识别率低,定位不准确等问题,本文提出并验证了一种高效的番茄串检测模型。模型由目标检测与语义分割两部分组成。目标检测负责提取番茄串所在的矩形区域,利用语义分割算法在感兴趣区域内获取番茄茎位置。在番茄检测模块,设计了一种基于深度卷积结构的主干网络,在实现模型参数稀疏性的同时提高目标的识别精度,采用K-means++聚类算法获得先验框,并改进了DIoU距离计算公式,进而获得更为紧凑的轻量级检测模型(DC-YOLO v4)。在番茄茎语义分割模块(ICNet)中以MobileNetv2为主干网络,减少参数计算量,提高模型运算速度。将采摘模型部署在番茄串采摘机器人上进行验证。采用自制番茄数据集进行测试,结果表明,DC-YOLO v4对番茄及番茄串的平均检测精度为99.31%,比YOLO v4提高2.04个百分点。语义分割模块的mIoU为81.63%,mPA为91.87%,比传统ICNet的mIoU提高2.19个百分点,mPA提高1.47个百分点。对番茄串的准确采摘率为84.8%,完成一次采摘作业耗时约6s。  相似文献   

14.
基于改进YOLOv5m的采摘机器人苹果采摘方式实时识别   总被引:1,自引:0,他引:1  
为准确识别果树上的不同苹果目标,并区分不同枝干遮挡情形下的果实,从而为机械手主动调整位姿以避开枝干对苹果的遮挡进行果实采摘提供视觉引导,提出了一种基于改进YOLOv5m面向采摘机器人的苹果采摘方式实时识别方法。首先,改进设计了BottleneckCSP-B特征提取模块并替换原YOLOv5m骨干网络中的BottleneckCSP模块,实现了原模块对图像深层特征提取能力的增强与骨干网络的轻量化改进;然后,将SE模块嵌入到所改进设计的骨干网络中,以更好地提取不同苹果目标的特征;进而改进了原YOLOv5m架构中输入中等尺寸目标检测层的特征图的跨接融合方式,提升了果实的识别精度;最后,改进了网络的初始锚框尺寸,避免了对图像里较远种植行苹果的识别。结果表明,所提出的改进模型可实现对图像中可直接采摘、迂回采摘(苹果上、下、左、右侧采摘)和不可采摘果实的识别,识别召回率、准确率、mAP和F1值分别为85.9%、81.0%、80.7%和83.4%。单幅图像的平均识别时间为0.025s。对比了所提出的改进算法与原YOLOv5m、YOLOv3和EfficientDet-D0算法在测试集上对6类苹果采摘方式的识别效果,结果表明,所提出的算法比其他3种算法识别的mAP分别高出了5.4、22、20.6个百分点。改进模型的体积为原始YOLOv5m模型体积的89.59%。该方法可为机器人的采摘手主动避开枝干对果实的遮挡,以不同位姿采摘苹果提供技术支撑,可降低苹果的采摘损失。  相似文献   

15.
疏花是梨生产中的重要农艺措施,机械化智能疏花是当今高速发展的疏花方式,花朵与花苞的分类与检测是保证疏花机器正常工作的基本要求。本研究针对目前梨园智能化生产中出现的梨树花序检测与分类问题,提出了一种基于改进YOLOv5s的水平棚架梨园花序识别算法Ghost-YOLOv5s-BiFPN。通过对田间采集的梨树花苞与花朵图像进行标注与数据扩充后送入算法进行训练得到检测模型。Ghost-YOLOv5s-BiFPN运用加权双向特征金字塔网络(Bi-directional Feature Pyramid Network,BiFPN)替换原始的路径聚合网络(Path Aggregation Network,PAN)结构,对网络提取的不同尺寸目标特征进行有效的融合。同时运用Ghost模块替换传统卷积,在不降低准确度的同时减少模型参数量和提升设备运行效率。田间试验结果表明,改进的Ghost-YOLOv5s-BiFPN算法对梨树花序中花苞与花朵的检测精度分别为93.2%和89.4%,两种目标平均精度为91.3%,检测单张图像时间为29 ms,模型大小为7.62 M。相比于原始YOLOv5s算法,检测精度与召回度分别提升了4.2%和2.7%,检测时间和模型参数量分别降低了9 ms和46.6%。本研究提出的算法可对梨树花苞与花朵进行精确的识别和分类,为后续梨园智能化疏花的实现提供技术支持。  相似文献   

16.
刘庆华  杨欣仪  接浩  孙世诚  梁振伟 《农业机械学报》2023,54(12):253-260,299
水稻籽粒检测在粮食储存中凸显重要作用,直接影响粮食销售的价格。针对一般机器视觉检测算法在水稻籽粒小目标的密集场景下存在难以识别且网络模型参数大,检测速度较慢、成本高等问题,提出一种基于YOLO v7优化的水稻籽粒检测算法。首先将部分高效聚合网络模块(Efficient layer aggregation network, ELAN)替换成轻量级网络模块GhostNetV2添加到主干及颈部网络部分,实现网络参数精简化的同时也减少了通道中的特征冗余;其次将卷积和自注意力结合的注意力模块(Convolution and self-attention mixed model, ACmix)添加到MP模块中,平衡全局和局部的特征信息,充分关注特征映射的细节信息;最后使用WIoU(Wise intersection over union)作为损失函数,减少了距离、纵横比之类的惩罚项干扰,单调聚焦机制的设计提高了模型的定位性能。在水稻籽粒图像数据集上验证改进后的模型检测水平,实验结果表明,改进后的YOLO v7模型的mAP@0.5达96.55%,mAP@0.5:0.95达70.10%,训练模型参数量...  相似文献   

17.
为在有限的嵌入式设备资源下达到实时检测要求,提出一种基于改进YOLO v5的百香果轻量化检测模型(MbECA-v5)。首先,使用MobileNetV3替换主干特征提取网络,利用深度可分离卷积代替传统卷积减少模型的参数量。其次,嵌入有效通道注意力网络(ECANet)关注百香果整体,引入逐点卷积连接特征提取网络和特征融合网络,提高网络对百香果图像的特征提取能力和拟合能力。最后,运用跨域与域内多轮训练相结合的迁移学习策略提高网络检测精度。试验结果表明,改进后模型的精确率和召回率为95.3%和88.1%;平均精度均值为88.3%,较改进前提高0.2个百分点。模型计算量为6.6 GFLOPs,体积仅为6.41MB,约为改进前模型的1/2,在嵌入式设备实时检测速度为10.92f/s,约为SSD、Faster RCNN、YOLO v5s模型的14倍、39倍、1.7倍。因此,基于改进YOLO v5的轻量化模型提高了检测精度和大幅降低了计算量和模型体积,在嵌入式设备上能够高效实时地对复杂果园环境中的百香果进行检测。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号