首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
In this study, the kinetics of propylene polymerization catalyzed with the fourth heterogeneous Ziegler‐Natta catalyst is studied. More than one type of active site is present in the propylene polymerization based on an analysis of the GPC curves. A multiple active site kinetic model (MSmodel) is proposed by using Monte Carlo technique. Good agreements in the polymerization kinetics are achieved for fitting the kinetic profiles with the MSmodel. In addition, the MSmodel is used to describe the dynamic evolutions of the active sites and their effects on the propylene polymerization. The simulated results indicate that different types of active sites have different polymerization kinetics and the site type can affect the propylene polymerization kinetics. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

2.
采用聚合实验并结合理论模拟技术对CS-1型高效聚丙烯催化剂的聚合动力学进行了研究。对通过聚合实验所获取的聚丙烯凝胶渗透色谱(GPC)进行解析,得到CS-1型聚丙烯催化剂的最可几活性中心数目。以此为基础,通过理论模型耦合实验结果确定了各活性中心的聚合动力学方程及各自动力学参数取值。此外,采用扩充的实验结果对模型进行了考核。结果表明,文中所建立的多活性中心动力学方程可以用来表征CS-1型聚丙烯催化剂的聚合动力学行为。  相似文献   

3.
A novel self‐supported emulsion‐based catalyst and a conventional MgCl2‐supported Ziegler–Natta catalyst were used in the copolymerization of propylene and ethylene under industrial conditions using triethyl aluminium as cocatalyst and dicyclopentyl dimethoxy silane as external donor. The effects of the concentration of ethylene and hydrogen on the polymerization behaviors and polymer properties were investigated. The combined effect of both ethylene and hydrogen increased the relative activity of the novel catalyst more than for the conventional catalyst. This trend was consistent with our earlier observed higher degree of dormancy, due to 2,1 insertions, found with the novel catalyst. More importantly, the work has uncovered that the self‐supported catalyst incorporates ethylene in a more random fashion and produces copolymers with relatively narrow molecular weight distribution (MWD). These results in combination with polymer microstructure studies using Fourier transform infrared spectroscopy, 13C‐NMR spectroscopy, and differential scanning calorimetry all indicated that the novel catalyst has a narrower distribution of active site types than the conventional reference catalyst. The narrow composition of active site structures, the narrow MWD, and the random incorporation of ethylene into the polymer chain indicated that the emulsion‐based catalyst possesses features that to a certain degree tend to be more indicative for a single‐site‐like catalyst structure and behavior. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

4.
The effect of internal donors of Ziegler‐Natta catalyst on stereoregularity in propylene polymerization was analyzed with the aid of the two‐site model analysis system. The amount of internal donor and that of external donor were varied. The probability in the selection of d (or l) monad in asymmetric site is contributed by both the amount of internal donor and that of external donor. With respect to the fraction of asymmetric site, the two‐site model enabled us to conceive that the new kinds of active centres are generated in specific cases where external donor is believed to be replacing weaker internal donor during polymerization. The effect of hydrogen concentration during polymerization is also discussed. © 2002 Society of Chemical Industry.  相似文献   

5.
A coupled‐single‐particle and Monte Carlo model was used to simulate propylene polymerization. To describe the effects of intraparticle transfer resistance on the polymerization kinetics, the polymeric multilayer model (PMLM) was applied. The reaction in each layer of the PMLM was described with the Monte Carlo method. The PMLM was solved together with the Monte Carlo model. Therefore, the model included the factors of the mass‐ and heat‐transfer resistance as well as the stochastic collision nature of the polymerization catalyzed with single‐site‐type/multiple‐site‐type catalysts. The model presented results such as the polymerization dynamics, the physical diffusion effect, and the polymer molecular weight and its distribution. The simulation data were compared with the experimental/actual data and the simulation results from the uniform Monte Carlo model. The results showed that the model was more accurate and offered deeper insight into propylene polymerization within such a microscopic reaction–diffusion system. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

6.
The liquid‐phase catalytic hydrogenation of iso‐valeraldehyde to iso‐amyl alcohol was studied in a slurry reactor. The kinetics of liquid‐phase hydrogenation of iso‐valeraldehyde over a 5% Ru/Al2O3 catalyst was studied in the range of temperature 373‐393 K and H2 pressure 0.68‐2.72 MPa using 2‐propanol as the solvent. The selectivity to iso‐amyl alcohol was 100%. The kinetic data were analyzed using a simple power law model. A single site Langmuir‐Hinshelwood type model suggesting dissociative adsorption of hydrogen and surface reaction as the rate‐controlling step provided the best fit of the experimental data. The catalyst could be reused thrice without any loss in activity.  相似文献   

7.
8.
A kinetic study of ethylene homopolymerization and copolymerization is conducted with a supported metallocene catalyst in a gas‐phase reactor. An experimental procedure is developed that minimizes the effect of impurities in the reactor and simultaneously yields consistent and reproducible reaction‐rate data. The effects of operational parameters such as reaction temperature, pressure, and comonomer concentration on the kinetics of both homopolymerization and copolymerization are investigated. Online perturbation techniques are implemented to determine key kinetic parameters such as the activation energies for ethylene propagation and catalyst deactivation. A reaction‐rate order close to 2 is obtained for ethylene homopolymerization from pressure perturbations, while near to first‐order dependency is observed in the presence of propylene. To quantify the effects of the operational parameters, a one‐site kinetic model for homopolymerization and a two‐site kinetic model for copolymerization are proposed. The necessary kinetic parameters in the model are estimated using the POLYRED™ package. The resulting kinetic model represents the kinetic data over a wide range of conditions for this supported metallocene catalyst. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 80: 81–114, 2001  相似文献   

9.
The morphological and kinetic characteristics of novel Ziegler–Natta catalysts were studied. Catalysts were prepared by Borealis Polymers Oy using a new synthesis technique (emulsion technology). Video microscopy was used to study the growth of single catalyst particles during polymerization in the gas and liquid phases. The distribution of single particle activity was very narrow in the catalyst without external support and was rather broad in the the silica‐supported catalyst. Video microscopy of molten polymer particles allowed observation of the process and degree of fragmentation of the catalyst particles. A correlation between the activation period during the initial stage of polymerization and catalyst fragmentation was found. Fragmentation was faster and more uniform with the catalyst without external support than with the silica‐supported catalyst. Scanning electron microscopy provided information on morphology evolution and shape replication of the catalyst particles. With the catalyst without external support, good shape replication was observed, and compact and spherical particles were formed. With the silica‐supported catalyst, shape replication was poor, and nonspherical porous polymer particle were formed. Modeling of the kinetics of propylene polymerization was done using a simple three‐step reaction scheme neglecting mass and heat transport effects. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 98: 2191–2200, 2005  相似文献   

10.
This article demonstrates that the molecular weight of propylene homopolymer decreases with time, and that the molecular weight distribution (MWD) narrows when a highly active MgCl2‐supported catalyst is used in a liquid pool polymerization at constant H2 concentration and temperature. To track the change in molecular weight and its distribution during polymerization, small portions of homo polymer samples were taken during the reaction. These samples were analyzed by Cross Fractionation Chromatograph (CFC), and the resulting data were treated with a three‐site model. These analyses clearly showed that the high molecular weight fraction of the distribution decreases as a function of time. At the same time, the MWD narrows because the weight‐average molecular weight decreases faster than the number‐average molecular weight. A probable mechanism based on the reaction of an external donor with AlEt3 is proposed to explain these phenomena. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 81: 1035–1047, 2001  相似文献   

11.
以搅拌床反应器中负载型催化剂催化的丁二烯气相聚合动力学实验为基础,用失活行为不同的两种活性位组合失活模型模拟了丁二烯气相聚合的衰减型动力学行为。研究结果表明,用活性位的1级失活和1.5级失活的组合失活模型可以满意地描述聚合速率的衰减行为。  相似文献   

12.
Summary: In this study, a process for continuous EP(D)M production is examined and a mechanistic kinetic model is developed to explain the behavior exhibited by this vanadium‐catalyzed solution polymerization process. The catalyst system without promoter and without hydrogen, produces polymer with bimodal molecular weight distributions (MWDs), while the addition of catalyst promoter causes an order of magnitude increase in catalyst productivity and eliminates the higher‐MW component in the MWD. The addition of hydrogen also precludes bimodal MWDs, regardless of the presence of promoter. In all cases, the polymerization rate has a zero‐order rather than a first‐order response to monomer concentration. The zero‐order response of polymerization rate to monomer concentration is described using a mechanism of monomer coordination to form a stable complex prior to insertion. The bimodal MWDs at high monomer feeds (corresponding to low monomer conversion), in the absence of catalyst promoter and hydrogen, are explained by a two‐site type catalyst model in which both monomer insertion and the formation of the second‐site type occur after the monomer forms a stable coordinated complex with the first catalyst site type. The model reconciles the molecular weight development with these seldom‐discussed features of vanadium catalysis.

Propylene acting as a coordinating ligand at a coordinatively unsaturated vanadium catalyst site (adapted from ref.[7]).  相似文献   


13.
A kinetic study of ethylene/1‐hexene (E/1‐H) copolymerization is conducted with a supported bridged metallocene catalyst in a gas phase reactor. The investigation into the kinetics of ethylene/1‐hexene copolymerization includes the effects of operational parameters such as the reaction temperature, pressure, and comonomer concentration. On‐line perturbation techniques are implemented to determine key kinetic parameters such as the activation energies for propagation and catalyst deactivation. A comparison of the kinetic parameters and behavior is made between the bridged and a previously studied unbridged catalyst. Finally, a two‐site model is proposed to explain the observed kinetic behavior with changing reaction temperature and comonomer concentration. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 81: 1451–1459, 2001  相似文献   

14.
A mesoporous molecular sieve MCM‐41 supported iron‐based diimine catalyst ( MC ) was prepared for the first time. The kinetic behavior of ethylene polymerization with MC was studied. The effects of Al/Fe molar ratio and various cocatalysts on the catalytic activity and properties of the polyethylene obtained were investigated. The results showed that good catalytic activities can be reached with cocatalyst methylaluminoxane (MAO) and triethylaluminium (TEA). Ethylene polymerization with MC gave polymers with higher molecular weight, melting temperature and onset temperatures of decomposition (Tonset) and better morphology than those obtained with the corresponding homogeneous catalyst. Copyright © 2004 Society of Chemical Industry  相似文献   

15.
This article demonstrates the influence of the molar ratio between diether as internal donor and Magnesium dichloride in processing of the catalyst preparation on the catalytic performance for propylene polymerization with MgCl2‐supported Ziegler–Natta catalyst. The effect of electron donor on catalyst is investigated. The experimental data find that diether content on catalyst increases and Ti content on catalyst decreases with the increase of diether/Mg molar ratio. This result indicates that diether as internal donor is not coordinated to Ti species but to Mg species on catalyst. The introduction of diether remarkably improves the catalytic activity. The extents of improvement closely connect with diether/Mg molar ratio. The stereospecificity of catalyst intensively depends on the structure of diether as internal donor. The possible model of multi‐active sites on heterogeneous Ziegler–Natta catalyst is proposed to explain these phenomena. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 99: 1399–1404, 2006  相似文献   

16.
BACKGROUND: Kinetic and morphological aspects of slurry propylene polymerization using a MgCl2‐supported Ziegler–Natta catalyst synthesized from a Mg(OEt)2 precursor are investigated in comparison with a ball‐milled Ziegler–Natta catalyst. RESULTS: The two types of catalyst show completely different polymerization profiles: mild activation and long‐standing activity with good replication of the catalyst particles for the Mg(OEt)2‐based catalyst, and rapid activation and deactivation with severe fragmentation of the catalyst particles for the ball‐milled catalyst. The observed differences are discussed in relation to spatial distribution of TiCl4 on the outermost part and inside of the catalyst particles. CONCLUSION: The Mg(OEt)2‐based Ziegler–Natta catalyst is believed to show highly stable polymerization activity and good replication because of the uniform titanium distribution all over the catalyst particles. Copyright © 2008 Society of Chemical Industry  相似文献   

17.
Polyethylene hollow spheres with diameters of 0.4–2 mm were synthesized by a two‐step slurry polymerization in a single reactor with a spherical MgCl2‐supported Ziegler‐Natta catalyst activated by triethylaluminum, in which the first step was prepolymerization with 0.1 MPa propylene and the second step was ethylene polymerization under 0.6 MPa. The prepolymerization step was found necessary for the formation of hollow spherical particles with regular shape (perfectly spherical shape). The effects of adding small amount of propylene (propylene/ethylene < 0.1 mol/mol) in the reactor after the prepolymerization step were investigated. Average size of the polymer particles was increased, and the polymerization rate was markedly enhanced by the added propylene. Development of the particle morphology with polymerization time was also studied. The polymer particles formed by less than 20 min of ethylene polymerization showed hollow spherical morphology with thin shell layer. Most of the particles had ratio of shell thickness/particle radius smaller than 0.5. By prolonging the ethylene polymerization, the shell thickness/particle radius ratio gradually approached 1, and the central void tended to disappear. Central void in polymer particles formed from smaller catalyst particles disappeared after shorter time of polymerization than those formed from bigger catalyst particles. The shell layer of the hollow particles contained large number of macro‐, meso‐ and micro‐pores. The mesopore size distributions of four typical samples were analyzed by nitrogen adsorption–desorption experiments. A simplified multigrain model was proposed to explain the morphogenesis of the hollow spherical particles. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43207.  相似文献   

18.
The kinetics of radical polymerization of glycidyl methacrylate, initiated by the free radicals formed in situ in the multi‐site phase transfer catalyst (PTC), 1,1,2,2‐tetramethyl‐1‐benzyl‐2‐n‐propylethylene‐1,2‐diammonium bromide chloride–potassium peroxydisulfate system was studied in an aqueous–organic two‐phase media at 60°C ± 1°C under inert and unstirred condition. The rate of polymerization (Rp) was determined at various concentrations of the monomer, initiator, catalyst, and volume fraction of aqueous phase. The effect of acid, ionic strength, and water‐immiscible organic solvents on the Rp was examined. The temperature dependence of the rate was studied, and activation parameters were calculated. Rp increased with an increase in the concentrations of monomer, initiator, multi‐site PTC, and increase in the polarity of solvent and temperature. The order with respect to monomer, initiator, and multi‐site PTC was found to be 0.50. A feasible free‐radical mechanism consistent with the experimental data has been proposed, and its significance was discussed. The synthesized polymer was confirmed by Fourier transform infrared spectral analysis. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

19.
Highly active supported vanadium‐magnesium catalysts (VMC) produce polyethylene (PE) with broad and bimodal molecular mass distribution (MMD) in comparison with the famous titanium‐magnesium catalysts (TMC). The effect of hydrogen as an efficient chain‐transfer agent on the MMD of PE has been studied. Increasing hydrogen concentration causes a considerable broadening of MMD of PE due to the shift of the low molecular weight peak on the MMD curve. At the same time, the high molecular weight shoulder stays at the same position even at high hydrogen concentration. This means that VMC contain two types of active centre. One type is very reactive in the chain‐transfer reaction with hydrogen. These centres produce low molecular weight PE in polymerization in the presence of hydrogen. The other type of active centre is not active in chain transfer with hydrogen. These centres produce high molecular weight PE ((1–3) × 106) and hydrogen does not affect the position of the high molecular weight shoulder. MMD data were used to analyze the kinetics of the chain‐transfer reaction with hydrogen and to calculate the rate constants of this reaction. Copyright © 2005 Society of Chemical Industry  相似文献   

20.
The effect of the porosity of Ziegler–Natta catalyst particles on early fragmentation, nascent polymer morphology, and activity were studied. The bulk polymerization of propylene was carried out with three different heterogeneous Ziegler–Natta catalysts under industrial conditions at low temperatures, that is, with a novel self‐supported catalyst (A), a SiO2‐supported catalyst (B), and a MgCl2‐supported catalyst (C), with triethyl aluminum as a cocatalyst and dicyclopentyl dimethoxy silane as an external donor. The compact catalyst A exhibited no measurable porosity and a very low surface area (<5 m2/g) by Brunauer–Emmet–Teller analysis, whereas catalysts B and C showed surface areas of 63 and 250 m2/g, respectively. The surface and cross‐sectional morphologies of the resulting polymer particles at different stages of particle growth were analyzed by scanning electron microscopy and transmission electron microscopy. The compact catalyst A showed homogeneous and instantaneous fragmentation already in the very early stages of polymerization, which is typically observed for porous MgCl2‐supported Ziegler–Natta catalysts. Moreover, the compact catalyst particles gave rise to almost perfectly spherical polymer particles with a smooth surface. In contrast, the silica‐supported catalyst B gave rise to particles having a cauliflower morphology, and the second reference catalyst C produced fairly spherical polymer particles with a rough surface. All of the three catalysts exhibited similar activities of 450 g of polypropylene/g of catalyst after 30 min of polymerization, and most interestingly, the comparative kinetic data presented indicated that the reaction rates were not influenced by the porosity of the catalyst. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号