首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper, we propose an optimization of MAC protocol design for wireless sensor networks, that accounts for cross‐layering information, in terms of location accuracy for nodes and residual energy levels. In our proposed solution we encode this cross‐layer information within a decreasing backoff function in the MAC. The protocol is optimized by appropriately selecting priority window lengths, and we have shown that accurate cross‐layer information plays a crucial role in achieving an optimal performance at the MAC layer level. The estimation accuracy can be characterized spatially using a location reliability probability distribution function. We show that this distribution function greatly influences the design of the optimal backoff window parameters, and the overall throughput performance of the MAC protocol. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

2.
Loss Differentiation Algorithms (LDA) are currently used to determine the cause of packet losses with an aim of improving TCP performance over wireless networks. In this work, we propose a cross-layer solution using two complementary LDA schemes in order to classify the loss origin on an 802.11 link and then to react consequently. The first LDA scheme, acting at the MAC layer, allows differentiating losses due to signal failure caused by displacement or by noise from other loss types. Moreover, in the case of a signal failure, this scheme adapts the behavior of the MAC layer in order to avoid a costly end-to-end TCP resolution. The objective of the second LDA scheme, which acts at the TCP layer, is to distinguish between losses due to interferences and those due to congestions, then accordingly adapt the TCP behavior. We finally demonstrate, through simulation, the efficiency of each LDA scheme as well as the whole cross-layer solution.  相似文献   

3.
A mobile ad hoc network (MANET) is a self‐organized and adaptive wireless network formed by dynamically gathering mobile nodes. Since the topology of the network is constantly changing, the issue of routing packets and energy conservation become challenging tasks. In this paper, we propose a cross‐layer design that jointly considers routing and topology control taking mobility and interference into account for MANETs. We called the proposed protocol as Mobility‐aware Routing and Interference‐aware Topology control (MRIT) protocol. The main objective of the proposed protocol is to increase the network lifetime, reduce energy consumption, and find stable end‐to‐end routes for MANETs. We evaluate the performance of the proposed protocol by comprehensively simulating a set of random MANET environments. The results show that the proposed protocol reduces energy consumption rate, end‐to‐end delay, interference while preserving throughput and network connectivity. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

4.
There is a plethora of recent research on high performance wireless communications using a cross‐layer approach in that adaptive modulation and coding (AMC) schemes at wireless physical layer are used for combating time varying channel fading and enhance link throughput. However, in a wireless sensor network, transmitting packets over deep fading channel can incur excessive energy consumption due to the usage of stronger forwarding error code (FEC) or more robust modulation mode. To avoid such energy inefficient transmission, a straightforward approach is to temporarily buffer packets when the channel is in deep fading, until the channel quality recovers. Unfortunately, packet buffering may lead to communication latency and buffer overflow, which, in turn, can result in severe degradation in communication performance. Specifically, to improve the buffering approach, we need to address two challenging issues: (1) how long should we buffer the packets? and (2) how to choose the optimum channel transmission threshold above which to transmit the buffered packets? In this paper, by using discrete‐time queuing model, we analyze the effects of Rayleigh fading over AMC‐based communications in a wireless sensor network. We then analytically derive the packet delivery rate and average delay. Guided by these numerical results, we can determine the most energy‐efficient operation modes under different transmission environments. Extensive simulation results have validated the analytical results, and indicates that under these modes, we can achieve as much as 40% reduction in energy dissipation. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

5.
胡勇  黄本雄 《信息通信》2007,20(2):68-70
随着无线网络的迅速发展,如何改进TCP在无线网络中的传输性能这一课题,已经成为国内外研究的热点.文章分析了现有的几种典型的TCP改进方案,并在此基础上介绍一种新的跨层方案.通过在传输层和链路层之间引入ARQ Snoop代理,在链路层检测并重传ARQ分组的同时,协调WLAN MAC子层的ARQ机制与TCP的ARQ策略.  相似文献   

6.
Tailored for wireless local area networks, the present paper proposes a cross‐layer resource allocation scheme for multiple‐input multiple‐output orthogonal frequency‐division multiplexing systems. Our cross‐layer resource allocation scheme consists of three stages. Firstly, the condition of sharing the subchannel by more than one user is studied. Secondly, the subchannel allocation policy which depends on the data packets’ lengths and the admissible combination of users per subchannel is proposed. Finally, the bits and corresponding power are allocated to users based on a greedy algorithm and the data packets’ lengths. The analysis and simulation results demonstrate that our proposed scheme not only achieves significant improvement in system throughput and average packet delay compared with conventional schemes but also has low computational complexity.  相似文献   

7.
Cross‐layer design is a generic designation for a set of efficient adaptive transmission schemes, across multiple layers of the protocol stack, that are aimed at enhancing the spectral efficiency and increasing the transmission reliability of wireless communication systems. In this paper, one such cross‐layer design scheme that combines physical layer adaptive modulation and coding (AMC) with link layer truncated automatic repeat request (T‐ARQ) is proposed for multiple‐input multiple‐output (MIMO) systems employing orthogonal space‐‐time block coding (OSTBC). The performance of the proposed cross‐layer design is evaluated in terms of achievable average spectral efficiency (ASE), average packet loss rate (PLR) and outage probability, for which analytical expressions are derived, considering transmission over two types of MIMO fading channels, namely, spatially correlated Nakagami‐m fading channels and keyhole Nakagami‐m fading channels. Furthermore, the effects of the maximum number of ARQ retransmissions, numbers of transmit and receive antennas, Nakagami fading parameter and spatial correlation parameters, are studied and discussed based on numerical results and comparisons. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

8.
To utilize spectrum resources more efficiently, dynamic spectrum access attempts to allocate the spectrum to users in an intelligent manner. Uncoordinated sharing with cognitive radio (CR) users is a promising approach for dynamic spectrum access. In the uncoordinated sharing model, CR is an enabling technology that allows the unlicensed or secondary users to opportunistically access the licensed spectrum bands (belonging to the so‐called primary users), without any modifications or updates for the licensed systems. However, because of the limited resources for making spectrum observations, spectrum sensing for CR is bound to have errors and will degrade the grade‐of‐service performance of both primary and secondary users. In this paper, we first propose a new partial spectrum sharing policy, which achieves efficient spectrum sharing between two licensed networks. Then, a Markov chain model is devised to analyze the proposed policy considering the effects of sensing errors. We also construct a cross‐layer design framework, in which the parameters of spectrum sharing policy at the multiple‐access control layer and the spectrum sensing parameters at the physical layer are simultaneously coordinated to maximize the overall throughput of the networks, while satisfying the grade‐of‐service constraints of the users. Numerical results show that the proposed spectrum sharing policy and the cross‐layer design strategy achieve a much higher overall throughput for the two networks. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

9.
The evolution of the Internet has been mainly promoted in recent years by the emergence and proliferation of wireless access networks towards a global ambient and pervasive network accessed from mobile devices. These new access networks have introduced new MAC layers independently of the legacy “wire-oriented” protocols that are still at the heart of the protocol stacks of the end systems. This principle of isolation and independence between layers advocated by the OSI model has its drawbacks of maladjustment between new access methods and higher-level protocols built on the assumption of a wired Internet. In this paper, we introduce and deliver solutions for several pathological communication behaviors resulting from the maladjustment between WLAN MAC and higher layer standard protocols such as TCP/IP and UDP/IP. Specially, based on an efficient analytical model for WLANs bandwidth estimation, we address in this paper the two following issues: (1) Performance degradation due to the lack of flow control between the MAC and upper layer resulting in potential MAC buffer overflow; (2) Unfair bandwidth share issues between various type of flows. We show how these syndromes can be efficiently solved from neutral “cross layer” interactions which entail no changes in the considered protocols and standards.  相似文献   

10.
This paper presents our experiences with SoftToken protocol, a new contention‐free medium access control protocol for wireless local area network. This new mechanism adds a token‐passing procedure on top of Institute of Electrical and Electronics Engineers 802.11 for coordinating transmissions and avoiding collisions. With this extension, it becomes possible to offer differentiated services in a deterministic manner. In this paper, we provide a thorough performance evaluation of SoftToken in terms of its scalability, robustness and efficiency in comparison with Institute of Electrical and Electronics Engineers 802.11 and a time division multiple access (TDMA)‐based Wi‐Fi extension called Soft‐TDMA. Our evaluation is based on experiments run on different test beds covering different scenarios in a wired virtual network environment and practical wireless environments supporting different types of traffic. The results show that SoftToken indeed provides better QoS performance in scenarios that require service differentiation (e.g. mixed voice over Internet protocol and best effort traffic scenarios). Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

11.
A wireless mesh network has been popularly researched as a wireless backbone for Internet access. However, the deployment of wireless mesh networks in unlicensed bands of urban areas is challenging because of interference from external users such as residential access points. We have proposed Urban‐X, which is a first attempt towards multi‐radio cognitive mesh networks in industrial, scientific, and medical bands. Urban‐X first controls network topology with a distributed channel assignment to avoid interference in large timescale. In such a topology, we develop a new link‐layer transmission‐scheduling algorithm together with source rate control as a small‐timescale approach, which exploits receiver diversity when receivers of multi‐flows can have different channel conditions because of varying interference. For this purpose, mesh nodes probe the channel condition of received mesh nodes using group Request to Send and group Clear to Send. In this study, we establish a mathematical Urban‐X model in a cross‐layer architecture, adopting a well‐known network utility maximization framework. We demonstrate the feasibility of our idea using a simulation on the model. Simulation results show improved network throughput from exploiting receiver diversity and distributed channel assignment under varying external user interference. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

12.
A wireless sensor network (WSN) principally is composed of many sensor nodes and a single in situ base station (BS), which are randomly distributed in a given area of interest. These sensor nodes transmit their measurements to the BS over multihop wireless paths. In addition to collecting and processing the sensed data, the BS performs network management operations. Because of the importance of the BS to the WSN, it is the most attractive target of attacks for an adversary. Basically, the adversary opts to locate the BS and target it with denial‐of‐service attack to temporarily or indefinitely disrupt the WSN operation. The adversary can intercept the data packet transmissions and use traffic analysis techniques such as evidence theory to uncover the routing topology. To counter such an attack, this paper presents a novel technique for boosting the BS anonymity by grouping nodes into clusters and creating multiple mesh‐based routing topologies among the cluster heads (CHs). By applying the closed space‐filling curves such as the Moore curve, for forming a mesh, the CHs are offered a number of choices for disseminating aggregated data to the BS through inter‐CH paths. Then, the BS forwards the aggregated data as well so that it appears as one of the CHs. The simulation results confirm the effectiveness of the proposed technique in boosting the anonymity of the BS.  相似文献   

13.
In this paper, we analytically study the dense basic service set network transmission problems in very high throughput (VHT, namely IEEE 802.11ac) wireless local area networks (WLANs) due to nervous bandwidth resources. Our contributions are threefold as follows. Firstly, we derive the closed-form expressions of throughput gains for primary channel establishment from multi-band selection using the optimal skipping rule, which balances the throughput gain from finding a good quality band with the overhead of measuring multiple bands. Secondly, in order to satisfy the quality of service of overlapping BSS users, we design a space interference avoidance mechanism, which can improve the system throughput for the whole dense WLANs. Thirdly, in order to further improve the transmission performance of dense BSS networks, we propose an unequal bandwidth transmission mechanism based on the VHT WLANs, which can not only clear the redundant network allocation vector duration timely but also use the limited bandwidth efficiently. The proposed protocols and mechanisms exploit both time and frequency diversity sufficiently, and are shown to result in typical throughput gains compared with the traditional IEEE 802.11 MAC protocol.  相似文献   

14.
Owing to limited wireless network resources, network applications must provide an adaptive quality‐guaranteed service to satisfy user requirements. Different applications are associated with different quality of service (QoS) concerns, as well as different QoS control parameters. This work presents an adaptive QoS algorithm by discussing the QoS specifications of three wireless access technologies, i.e. 3G, WiMAX and WiFi. Based on cross‐layer and cognition concepts, these environmental parameters are integrated with the sensing of spectral and received signal strength from a cognitive radio paradigm. An adaptive QoS algorithm is then proposed to select the optimal access network for services. Simulation results indicate that the proposed adaptive QoS algorithm outperforms available ones in real‐time applications. Compared with traditional algorithms, the proposed algorithm reduces not only the average delay time and jitter for VoIP services to 0.16 s and 0.09 ms, respectively, but also the packet loss ratio for high‐definition video streaming by 3.4%. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

15.
This paper proposes a new cross‐layer optimization algorithm for wireless mesh networks (WMNs). CDMA/TDD (code division multiple access/time division duplex) is utilized and a couple of TDD timeslot scheduling schemes are proposed for the mesh network backbone. Cross‐layer optimization involves simultaneous consideration of the signal to interference‐plus‐noise ratio (SINR) at the physical layer, traffic load estimation and allocation at medium access control (MAC) layer, and routing decision at the network layer. Adaptive antennas are utilized by the wireless mesh routers to take advantage of directional beamforming. The optimization formulation is subject to routing constraints and can be solved by general nonlinear optimization techniques. Comparisons are made with respect to the classic shortest‐path routing algorithm in the network layer. The results reveal that the average end‐to‐end successful packet rate (SPR) can be significantly improved by the cross‐layer approach. The corresponding optimized routing decisions are able to reduce the traffic congestion. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

16.
In this paper, the cross‐layer optimal design of multihop ad hoc network employing full‐duplex cognitive radios (CRs) is investigated. Firstly, the analytical expressions of cooperative spectrum sensing performance for multihop CR networks over composite fading channels are derived. Then, the opportunistic throughput and transmit power of CRs are presented based on the derivation of false alarm and missed detection probability. Finally, a multiobjective optimization model is proposed to maximize the opportunistic throughputs and minimize the transmitting power. Simulation results indicate that Pareto optimal solution of sensing duration, decision threshold, and transmit power can be achieved by cross‐layer multiobjective optimization, it can balance the conflicts between different objective functions and reap the acceptable outcomes for multihop CR network.  相似文献   

17.
In the IEEE 802.11 wireless LAN (WLAN), the fundamental medium access control (MAC) mechanism—distributed coordination function (DCF), only supports best‐effort service, and is unaware of the quality‐of‐service (QoS). IEEE 802.11e enhanced distributed channel access (EDCA) supports service differentiation by differentiating contention parameters. This may introduce the problem of non‐cooperative service differentiation. Hence, an incompletely cooperative EDCA (IC‐EDCA) is proposed in this paper to solve the problem. In IC‐EDCA, each node that is cooperative a priori adjusts its contention parameters (e.g., the contention window (CW)) adaptively to the estimated system state (e.g., the number of competing nodes of each service priority). To implement IC‐EDCA in current WLAN nodes, a frame‐analytic estimation algorithm is presented. Moreover, an analytical model is proposed to analyze the performance of IC‐EDCA under saturation cases. Extensive simulations are also carried out to compare the performances of DCF, EDCA, incompletely cooperative game, and IC‐EDCA, and to evaluate the accuracy of the proposed performance model. The simulation results show that IC‐EDCA performs better than DCF, EDCA, and incompletely cooperative game in terms of system throughput or QoS, and that the proposed analytical model is valid. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

18.
In this paper, a cross‐layer analytical framework is proposed to analyze the throughput and packet delay of a two‐hop wireless link in wireless mesh network (WMN). It considers the adaptive modulation and coding (AMC) process in physical layer and the traffic queuing process in upper layers, taking into account the traffic distribution changes at the output node of each link due to the AMC process therein. Firstly, we model the wireless fading channel and the corresponding AMC process as a finite state Markov chain (FSMC) serving system. Then, a method is proposed to calculate the steady‐state output traffic of each node. Based on this, we derive a modified queuing FSMC model for the relay to gateway link, which consists of a relayed non‐Poisson traffic and an originated Poisson traffic, thus to evaluate the throughput at the mesh gateway. This analytical framework is verified by numerical simulations, and is easy to extend to multi‐hop links. Furthermore, based on the above proposed cross‐layer framework, we consider the problem of optimal power and bandwidth allocation for QoS‐guaranteed services in a two‐hop wireless link, where the total power and bandwidth resources are both sum‐constrained. Secondly, the practical optimal power allocation algorithm and optimal bandwidth allocation algorithm are presented separately. Then, the problem of joint power and bandwidth allocation is analyzed and an iterative algorithm is proposed to solve the problem in a simple way. Finally, numerical simulations are given to evaluate their performances. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

19.
Wireless networks are being increasingly employed to provide mobile access to network services. In most existing standards, reliable transmission on the wireless medium is achieved through the introduction of ARQ schemes at MAC layer, a strategy which is also employed by TCP for reliable end‐to‐end data delivery. The paper proposes an approach to overcome the performance degradation deriving from the duplicate ARQ strategies implemented at the transport and MAC layers by introducing a cross‐layer solution to reduce un‐necessary transmissions on the wireless medium. Furthermore, the paper describes how the proposed scheme, called ARQ Proxy, can be deployed in three different wireless technologies (3G Long‐Term Evolution, Wi‐Fi, and WiMAX) and provides extensive validation of the achievable improvement through simulations. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

20.
Elastic optical networks emerge as a reliable backbone platform covering the next‐generation connectivity requirements. It consists of advanced enabling components that provide the ability for extensive configuration leading to performance improvement in many areas of interest. Higher layer analytics like data from IP traffic prediction can assist in the process of allocating resources at the optical layer. This way, light connections are established more efficiently while targeting specific performance goals. For that purpose, an algorithm is designed and evaluated that exploits traffic prediction of data transfers between nodes of an optical metro or backbone network. Next, it utilizes adaptive functionality based on particle swarm optimization to find paths with available spectrum resources. These resources can facilitate more efficiently the future traffic demand, since traffic prediction data are considered when finding the related paths. The innovative resource allocation method is evaluated using small and very large real topologies. It scales (in execution time and resource usage) according to node increase, executes in feasible time frames, and reduces transponder utilization resulting to increased energy efficiency.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号