首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Changes in stream chemistry were studied for 4 years following large wildfires that burned in Glacier National Park during the summer of 2003. Burned and unburned drainages were monitored from December 2003 through August 2007 for streamflow, major constituents, nutrients, and suspended sediment following the fires. Stream‐water nitrate concentrations showed the greatest response to fire, increasing up to tenfold above those in the unburned drainage just prior to the first post‐fire snowmelt season. Concentrations in winter base flow remained elevated during the entire study period, whereas concentrations during the growing season returned to background levels after two snowmelt seasons. Annual export of total nitrogen from the burned drainage ranged from 1·53 to 3·23 kg ha?1 yr?1 compared with 1·01 to 1·39 kg ha?1 yr?1 from the unburned drainage and exceeded atmospheric inputs for the first two post‐fire water years. Fire appeared to have minimal long‐term effects on other nutrients, dissolved organic carbon, and major constituents with the exception of sulfate and chloride, which showed increased concentrations for 2 years following the fire. There was little evidence that fire affected suspended‐sediment concentrations in the burned drainage. Sediment yields in subalpine streams may be less affected by fire than in lower elevation streams because of the slow release rate of water during spring snowmelt. Published in 2008 by John Wiley & Sons, Ltd.  相似文献   

2.
Riparian vegetation is frequently used for stream bank stabilization, but the effects of vegetation on subaerial processes have not been quantified. Subaerial processes, such as soil desiccation and freeze–thaw cycling, are climate‐related phenomena that deliver soil directly to the stream and make the banks more vulnerable to fluvial erosion by reducing soil strength. This study compares the impact of woody and herbaceous vegetation on subaerial processes by examining soil temperature and moisture regimes in vegetated stream banks. Soil temperature and water tension were measured at six paired field sites in southwestern Virginia, USA, for one year. Results showed that stream banks with herbaceous vegetation had higher soil temperatures and a greater diurnal temperature range during the summer compared to forested stream banks. Daily average summer soil water tension was 13 to 57 per cent higher under herbaceous vegetation than under woody vegetation, probably due to evapotranspiration from the shallow herbaceous root system on the bank. In contrast to summer conditions, the deciduous forest buffers provided little protection for stream banks during the winter: the forested stream banks experienced diurnal temperature ranges two to three times greater than stream banks under dense herbaceous cover and underwent as many as eight times the number of freeze–thaw cycles. During the winter, the stream banks under the deciduous forests were exposed to solar heating and night time cooling, which increased the diurnal soil temperature range and the occurrence of freeze–thaw cycling. Study results also indicated that freeze–thaw cycling and soil desiccation were greater on the upper stream bank due to thermal and moisture regulation of the lower bank by the stream. Therefore, subaerial erosion and soil weakening may be greater on the upper stream banks. Additional research is needed on the influence of subaerial processes on both subaerial and fluvial erosion. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

3.
The Shenandoah Watershed Study (established in 1979) and the Virginia Trout Stream Sensitivity Study (established in 1987) serve to increase understanding of hydrological and biogeochemical changes in western Virginia mountain streams that occur in response to acidic deposition and other ecosystem stressors. The SWAS-VTSSS program has evolved over its 40+ year history to consist of a temporally robust and spatially stratified monitoring framework. Currently stream water is sampled for water quality bi-hourly during high-flow events at three sites and weekly at four sites within Shenandoah National Park (SHEN), and quarterly at 72 sites and on an approximately decadal frequency at ~450 sites within the wider western Virginia Appalachian region. Stream water is evaluated for pH, acid neutralizing capacity (ANC), base cations (calcium, magnesium, sodium and potassium ion), acid anions (sulphate, nitrate and chloride), silica, ammonium, and conductivity with a subset of samples evaluated for monomeric aluminium and dissolved organic carbon. Hourly stream discharge (four sites) and in-situ measurements of conductivity, water and air temperature (three sites) are also measured within SHEN. Here we provide an overview and timeline of the SWAS-VTSSS stream water monitoring program, summarize the field and laboratory methods, describe the water chemistry and hydrologic data sets, and document major watershed disturbances that have occurred during the program history. Website links and instructions are provided to access the stream chemistry and time-series monitoring data in open-access federal databases. The purpose of this publication is to promote awareness of these unique, long-term data sets for wider use in catchment studies. The water chemistry and hydrologic data can be used to investigate a wide range of biogeochemical research questions and provide key inputs for models of these headwater stream ecosystems. SWAS-VTSSS is an ongoing program and quality assured data sets are uploaded to the databases annually.  相似文献   

4.
J. A. Leach  R. D. Moore 《水文研究》2010,24(17):2369-2381
Stream temperature and riparian microclimate were characterized for a 1·5 km wildfire‐disturbed reach of Fishtrap Creek, located north of Kamloops, British Columbia. A deterministic net radiation model was developed using hemispherical canopy images coupled with on‐site microclimate measurements. Modelled net radiation agreed reasonably with measured net radiation. Air temperature and humidity measured at two locations above the stream, separated by 900 m, were generally similar, whereas wind speed was poorly correlated between the two sites. Modelled net radiation varied considerably along the reach, and measurements at a single location did not provide a reliable estimate of the modelled reach average. During summer, net radiation dominated the surface heat exchanges, particularly because the sensible and latent heat fluxes were normally of opposite sign and thus tended to cancel each other. All surface heat fluxes shifted to negative values in autumn and were of similar magnitude through winter. In March, net radiation became positive, but heat gains were cancelled by sensible and latent heat fluxes, which remained negative. A modelling exercise using three canopy cover scenarios (current, simulated pre‐wildfire and simulated complete vegetation removal) showed that net radiation under the standing dead trees was double that modelled for the pre‐fire canopy cover. However, post‐disturbance standing dead trees reduce daytime net radiation reaching the stream surface by one‐third compared with complete vegetation removal. The results of this study have highlighted the need to account for reach‐scale spatial variability of energy exchange processes, especially net radiation, when modelling stream energy budgets. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

5.
This study compared summer stream temperature between two years in the Star Creek catchment, Alberta, a headwater basin on the eastern slopes of the Canadian Rocky Mountains. Star Creek is a subsurface water dominated stream, which represents important habitat for native salmonid species. Hydrometeorological data from May to September of 2010 and 2011 accompanied by stream energy budget calculations were used to describe the drivers of stream temperature in this small forested stream. Mean, maximum, and minimum weekly stream temperatures were lower from May to August and higher in September 2011 compared to 2010. Weekly range in stream temperature was also different between years with a higher range in 2010. Inter‐annual stream temperature variation was attributed discharge differences between years, shown to be primarily governed by catchment‐scale moisture conditions. This study demonstrates that both meteorological and hydrological processes must be considered in order to understand stream temperature response to changing environmental conditions in mountainous regions. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

6.
Increasing dissolved organic carbon (DOC) concentrations have been reported during the last 15 years in streams from the United Kingdom, Northern Europe and North America. Identifying the sources of DOC and the controls of the delivery to the stream is important to understand the significance of these trends. This relies on the availability of observations of DOC dynamics during storm events, since much of the DOC export from soils to streams occurs during high flows. This study analyses DOC data for eight storm events during winter 2005–2006 in a small agricultural experimental catchment—the Kervidy‐Naizin experimental catchment—located in Western France. A four end‐member mixing approach was applied to the eight monitored storm events to identify DOC sources and quantify their respective contribution to DOC stream fluxes, using DOC, nitrate, sulphate and chloride as tracers. The results show that DOC concentrations in the stream at the outlet of this catchment increase markedly during storm events. The slope of the linear regression between DOC concentration and discharge was not constant for the eight events and depended on pre‐event hydrological conditions. Between 64 and 86% of the DOC that enter the stream during storms originated from the upper layers of the riparian wetland soils. The variation of the delivery of DOC seems to be controlled by hydrological processes only, the wetland soils acting as a non‐limiting store. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

7.
Norman E. Peters 《水文研究》2009,23(20):2860-2878
A long‐term stream water quality monitoring network was established in the city of Atlanta, Georgia during 2003 to assess baseline water quality conditions and the effects of urbanization on stream water quality. Routine hydrologically based manual stream sampling, including several concurrent manual point and equal width increment sampling, was conducted ~12 times annually at 21 stations, with drainage areas ranging from 3·7 to 232 km2. Eleven of the stations are real‐time (RT) stations having continuous measures of stream stage/discharge, pH, dissolved oxygen, specific conductance, water temperature and turbidity, and automatic samplers for stormwater collection. Samples were analyzed for field parameters, and a broad suite of water quality and sediment‐related constituents. Field parameters and concentrations of major ions, metals, nutrient species and coliform bacteria among stations were evaluated and with respect to watershed characteristics and plausible sources from 2003 through September 2007. Most constituent concentrations are much higher than nearby reference streams. Concentrations are statistically different among stations for several constituents, despite high variability both within and among stations. Routine manual sampling, automatic sampling during stormflows and RT water quality monitoring provided sufficient information about urban stream water quality variability to evaluate causes of water quality differences among streams. Fecal coliform bacteria concentrations of most samples exceeded Georgia's water quality standard for any water‐usage class. High chloride concentrations occur at three stations and are hypothesized to be associated with discharges of chlorinated combined sewer overflows, drainage of swimming pool(s) and dissolution and transport during rainstorms of CaCl2, a deicing salt applied to roads during winter storms. One stream was affected by dissolution and transport of ammonium alum [NH4Al(SO4)2] from an alum‐manufacturing plant; streamwater has low pH (<5), low alkalinity and high metals concentrations. Several trace metals exceed acute and chronic water quality standards and high concentrations are attributed to washoff from impervious surfaces. Published in 2009 by John Wiley & Sons, Ltd.  相似文献   

8.
The effects of basin size on low-flow stream chemistry and subsurface contact time were examined for a part of the Neversink River watershed in southern New York State. Acid neutralizing capacity (ANC), the sum of base cation concentrations (SBC), pH and concentrations of total aluminum (Al), dissolved organic carbon (DOC) and silicon (Si) were measured during low stream flow at the outlets of nested basins ranging in size from 0·2 to 166·3 km2. ANC, SBC, pH, Al and DOC showed pronounced changes as basin size increased from 0·2 to 3 km2, but relatively small variations were observed as basin size increased beyond 3 km2. An index of subsurface contact time computed from basin topography and soil hydraulic conductivity also showed pronounced changes as basin size increased from 0·2 to 3 km2 and smaller changes as basin size increased beyond 3 km2. These results suggest that basin size affects low-flow stream chemistry because of the effects of basin size on subsurface contact time. © 1997 John Wiley & Sons, Ltd.  相似文献   

9.
This study examined the thermal regime of a headwater stream within a clear‐cut. The stream had a complex morphology dominated by step–pool features, many formed by sediment accumulation upstream of woody debris. Maximum daily temperatures increased up to 5 °C after logging, and were positively associated with maximum daily air temperature and negatively with discharge. Maximum daily temperatures generally increased with downstream distance through the cut block, but decreased with distance in two segments over distances of tens of metres, where the topography indicated relatively concentrated lateral inflow. Localized cool areas within a step–pool unit were associated with zones of concentrated upwelling. Bed temperatures tended to be higher and have greater ranges in areas of downwelling flow into the bed. Heat budget estimates were made using meteorological measurements over the water surface and a model of net radiation using canopy characteristics derived from fisheye photography. Heat exchange driven by hyporheic flow through the channel step was a cooling effect during daytime, with a magnitude up to approximately 25% that of net radiation during the period of maximum daytime warming. Heat budget calculations in these headwater streams are complicated by the heterogeneity of incident solar radiation and channel geometry, as well as uncertainty in estimating heat and water exchanges between the stream and the subsurface via hyporheic exchange and heat conduction. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

10.
Analysis of the bankfull cross-sections of headwater streams in Ado-Ekiti region of Southwestern Nigeria and their comparison with data from other tropical environments and temperate latitudes reveal that the channel capacities of streams in the humid tropics are relatively smaller than those of temperate regions, averaging 1.51 m2 with a coefficient of variation of 87 per cent. This is attributed to the small stream discharge, the predominantly low and highly seasonal flows of the streams, the low shear stress of stream load, and the stabilizing and protective influence of riparian vegetation and surface incrustations. The chanel capacities of the urban streams (mean = 1.13m2) are about 47 per cent smaller than those of the natural streams (mean = 2.12 m2) in the same ecological zone. In terms of hydraulic efficiency, the urban streams also have relatively inefficient cross-sections and larger width/depth ratios than their rural or natural counterparts. Resurveys of seventeen monumented cross-sections reveal that while channel shoulder width increased by only 6 per cent over a one-year period, channel depth and capacity decreased by 16 per cent and 4 per cent respectively; the observed decrease in channel size occurs entirely in the channel depth dimension. Thus the response of stream channels to the urbanization of small headwater catchments in the humid tropics is probably more of vertical accretion of channel bed and reduction in channel capacity rather than the widely-reported anomalous enlargement of urban streams through channel widening. The rapid rate of channel aggradation is attributed to excessive rates of sediment production and delivery to streams in urbanized catchments in the humid tropics, rapid deposition of sediments during small runoff events and on the falling stage of storm hydrographs, and the inability of the streams to evacuate the sediments delivered to them despite the increased discharge and peak flow associated with urbanization. The low competence of the urban streams is attributed to the predominance of low flows, very gentle bed slopes, and most importantly the widespread dumping of refuse into the channels thereby reducing flow velocity and promoting backwater flooding, ponding, and sedimentation. The correlations between drainage basin area, a surrogate for stream discharge, and channel capacity are very strong for the rural watersheds, and the regression analysis indicates a tendency towards a steady-state isometric relationship. Urban channels are, to a large extent, in disequilibrium with the urban hydrological state. However, spatial variations in the degree of urbanization of the catchments, and, therefore in runoff volume and velocity, exercise strong control on channel width, depth, and size. A model of the sequence of stream channel adjustment to the urbanization of small headwater catchments in the humid tropics is presented.  相似文献   

11.
Alan R. Hill 《水文研究》1990,4(2):121-130
Groundwater cation concentrations in relation to hydrologic flow paths were studied in the riparian forest zone of a small headwater catchment near Toronto, Ontario. Groundwater entering the riparian zone from uplands showed significant differences in cation concentrations between slope-foot and near-stream locations. Mean Ca, Mg, K, and Na concentrations in shallow groundwater at the upland perimeter of the riparian forest were 65-0, 11-2, 0-7, and 1-8 mg L?1 respectively. Mean Ca, Mg, K, and Na concentrations in deep groundwater flowing upwards through glacial sands beneath the riparian zone were 52-1, 15-1, 1-3, and 2-6 mg L?1 respectively. Shallow groundwater emerged as slope-foot springs producing surface rivulets which crossed the riparian zone to the streams. Deep groundwater flowed upward through organic soils into the rivulets and also discharged directly to the streams as bed and bank seepage. Springs had higher Ca concentrations and lower Mg, K, and Na values than rivulets entering the streams. Conversely, Mg, K, and Na concentrations were higher and Ca concentrations were lower in bank seeps in comparison to rivulets. These results suggest that differences in cation concentrations in groundwater entering the streams result from initial contrast in the chemistry of shallow and deep groundwater rather than from the effects of riparian soils and vegetation.  相似文献   

12.
Relationships between stream chemistry and elevation, area, Anakeesta geology, soil properties, and dominant vegetation were evaluated to identify the influence of basin characteristics on baseflow and stormflow chemistry in eight streams of the Great Smoky Mountains National Park. Statistical analyses were employed to determine differences between baseflow and stormflow chemistry, and relate basin‐scale factors governing local chemical processes to stream chemistry. Following precipitation events, stream pH was reduced and aluminium concentrations increased, while the response of acid neutralizing capacity (ANC), nitrate, sulfate, and base cations varied. Several basin characteristics were highly correlated with each other, demonstrating the interrelatedness of topographical, geological, soil, and vegetative parameters. These interrelated basin factors uniquely influenced acidification response in these streams. Streams in higher‐elevation basins (>975 m) had significantly lower pH, ANC, sodium, and silicon and higher nitrate concentrations (p < 0.05). Streams in smaller basins (<10 km2) had significantly lower nitrate, sodium, magnesium, silicon, and base cation concentrations. In stormflow, streams in basins with Anakeesta geology (>10%) had significantly lower pH and sodium concentrations, and higher aluminium concentrations. Chemical and physical soil characteristics and dominant overstory vegetation in basins were more strongly correlated with baseflow and stormflow chemical constituents than topographical and geological basin factors. Saturated hydraulic conductivity, of all the soil parameters, was most related to concentrations of stormflow constituents. Basins with higher average hydraulic conductivities were associated with lower stream pH, ANC, and base cation concentrations, and higher nitrate and sulfate concentrations. These results emphasize the importance of soil and geological properties influencing stream chemistry and promote the prioritization of management strategies for aquatic resources. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

13.
Predicting spatial and temporal variations in bank erosion due to extreme floods presents a long‐standing challenge in geomorphology. We develop two methodologies for rapid, regional‐scale assessments of stream reaches susceptible to channel widening. The first proposes that channel widening occurs when unit stream power exceeds a critical threshold (300 W/m2). The second is motivated by the observation that widening often occurs at channel bends. We introduce a new metric, the bend stress parameter, which is proportional to the centripetal force exerted on a concave bank. We propose that high centripetal forces generate locally high bank shear forces and enhance channel bank erosion. We test both metrics using the geomorphic signature of Tropical Storm Irene (2011) on the White and the Saxtons Rivers, Vermont. Specifically, we test if reaches where significant channel widening occurred during Irene required one or both metrics to exceed threshold values. We observe two distinct styles of channel widening. Where unit stream power and bend stress parameter are high, widening is usually due to bank retreat. Elsewhere widening is usually due to the stripping of the upstream end of mid‐channel islands. Excluding widening associated with the stripping of the heads of mid‐channel islands, almost all the widening (> 98%) occurred along reaches identified as susceptible to widening. The combined metrics identify up to one‐quarter of the reaches lacking susceptibility to channel widening. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

14.
Upland forested catchments in the Appalachian Plateau region receive among the greatest rates of atmospheric sulphur (S) deposition in the eastern USA, although coal mines and S‐bearing minerals in bedrock may also contribute to stream acidity in this region. Watershed mass balance and stable S isotopic values (δ34S) of sulphate (SO42?) were used to assess the contributions to stream SO42? from atmospheric and lithogenic sources at Yellow Creek (YC), a headwater catchment on the Appalachian Plateau in West Virginia. Oxygen isotopic values (δ18O) of water were used to study catchment hydrology. Stream output of SO42? was c. 60% of atmospheric S deposition during a relatively dry year, whereas atmospheric S input was nearly balanced by stream output during a year with above normal amounts of precipitation. The temporal patterns and values of δ34S were similar between bulk precipitation and stream water at two upper elevation sites. At the lowest elevation site, stream δ34S values were similar to bulk precipitation values during the dormant season but were slightly lower than precipitation during the low‐flow summer, probably as the result of a greater proportion of stream water being derived from deep hydrological flowpaths that have contacted S‐bearing minerals with low δ34S values in coal seams. Stream δ34S values at YC were significantly higher than at Coal Run, a catchment containing abandoned coal prospects and having a greater amount of S‐bearing minerals than YC. Results suggested that lithogenic S is a relatively minor source and that atmospheric deposition is the principal source of stream SO42?, and thus stream acidity, at YC. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

15.
16.
Long-term ecosystem studies are valuable for understanding integrated ecosystem response to global changes in atmospheric deposition and climate. We examined trends for a 35-year period (1982/83–2017/18) in concentrations of a range of solutes in precipitation and stream water from nine headwater catchments spanning elevation and surficial geology gradients at the Turkey Lakes watershed (TLW) in northeastern Ontario, Canada. Average annual water year (WY, October to September) concentrations in precipitation significantly declined over the period for sulphate (SO42−), nitrate (NO3) and chloride (Cl), while calcium (Ca2+) and potassium (K+) concentrations increased, resulting in a significant pH increase from 4.2 to 5.7. Trends in stream chemistry through time are generally consistent with expectations associated with acidification recovery. Concentration of many stream water solutes (SO42−, Cl, calcium [Ca2+], magnesium [Mg2+] and NH4+ generally decreased, while others (silica [SiO2] and dissolved organic carbon [DOC]) generally increased. Increases were also observed for alkalinity (six of nine catchments), acid neutralizing capacity ([ANC]; six of nine catchments) and pH (eight of nine catchments), while conductivity declined (six of nine catchments). Variability in trends among catchments are associated with differences in surficial geology and wetland cover. While absolute solute concentrations were generally lower at bedrock dominated high-elevation catchments compared to till dominated lower elevation catchments, the rate of change of concentration was often greater for high elevation catchments. This study confirms continued, but non-linear stream chemistry recovery from acidification, particularly at the less buffered high and moderate elevation sites. The heterogeneity of responses among catchments highlights our incomplete understanding of the relative importance of different mechanisms influencing stream chemistry and the consequences for downstream ecosystems.  相似文献   

17.
Headwater streams are critical components of drainage systems, directly connecting terrestrial and downstream aquatic ecosystems. The amount of water in a stream can alter hydrologic connectivity between the stream and surrounding landscape and is ultimately an important driver of what constituents headwater streams transport. There is a shortage of studies that explore concentration–discharge (C‐Q) relationships in headwater systems, especially forested watersheds, where the hydrological and ecological processes that control the processing and export of solutes can be directly investigated. We sought to identify the temporal dynamics and spatial patterns of stream chemistry at three points along a forested headwater stream in Northern Michigan and utilize C‐Q relationships to explore transport dynamics and potential sources of solutes in the stream. Along the stream, surface flow was seasonal in the main stem, and perennial flow was spatially discontinuous for all but the lowest reaches. Spring snowmelt was the dominant hydrological event in the year with peak flows an order of magnitude larger at the mouth and upper reaches than annual mean discharge. All three C‐Q shapes (positive, negative, and flat) were observed at all locations along the stream, with a higher proportion of the analytes showing significant relationships at the mouth than at the mid or upper flumes. At the mouth, positive (flushing) C‐Q shapes were observed for dissolved organic carbon and total suspended solids, whereas negative (dilution) C‐Q shapes were observed for most cations (Na+, Mg2+, Ca2+) and biologically cycled anions (NO3?, PO43?, SO42?). Most analytes displayed significant C‐Q relationships at the mouth, indicating that discharge is a significant driving factor controlling stream chemistry. However, the importance of discharge appeared to decrease moving upstream to the headwaters where more localized or temporally dynamic factors may become more important controls on stream solute patterns.  相似文献   

18.
The quantitative evaluation of the effects of bedrock groundwater discharge on spatial variability of stream dissolved organic carbon (DOC), dissolved inorganic nitrogen (DIN) and dissolved inorganic phosphorous (DIP) concentrations has still been insufficient. We examined the relationships between stream DOC, DIN and DIP concentrations and bedrock groundwater contribution to stream water in forest headwater catchments in warm-humid climate zones. We sampled stream water and bedrock springs at multiple points in September and December 2013 in a 5 km2 forest headwater catchment in Japan and sampled groundwater in soil layer in small hillslopes. We assumed that stream water consisted of four end members, groundwater in soil layer and three types of bedrock groundwater, and calculated the contributions of each end member to stream water from mineral-derived solute concentrations. DOC, DIN and DIP concentrations in stream water were compared with the calculated bedrock groundwater contribution. The bedrock groundwater contribution had significant negative linear correlation with stream DOC concentration, no significant correlation with stream DIN concentration, and significant positive linear correlation with stream DIP concentration. These results highlighted the importance of bedrock groundwater discharge in establishing stream DOC and DIP concentrations. In addition, stream DOC and DIP concentrations were higher and lower, respectively, than those expected from end member mixing of groundwater in soil layer and bedrock springs. Spatial heterogeneity of DOC and DIP concentrations in groundwater and/or in-stream DOC production and DIP uptake were the probable reasons for these discrepancies. Our results indicate that the relationships between spatial variability of stream DOC, DIN and DIP concentrations and bedrock groundwater contribution are useful for comparing the processes that affect stream DOC, DIN and DIP concentrations among catchments beyond the spatial heterogeneity of hydrological and biogeochemical processes within a catchment.  相似文献   

19.
Jason A. Leach  Dan Moore 《水文研究》2017,31(18):3160-3177
Stream temperature controls a number of biological, chemical, and physical processes occurring in aquatic environments. Transient snow cover and advection associated with lateral throughflow inputs can have a dominant influence on stream thermal regimes for headwater catchments in the rain‐on‐snow zone. Most existing stream temperature models lack the ability to properly simulate these processes. We developed and evaluated a conceptual‐parametric catchment‐scale stream temperature model that includes the role of transient snow cover and lateral advection associated with throughflow. The model consists of routines for simulating canopy interception, snow accumulation and melt, hillslope throughflow runoff and temperature, and stream channel energy exchange processes. The model was used to predict discharge and stream temperature for a small forested headwater catchment near Vancouver, Canada, using long‐term (1963–2013) weather data to compute model forcing variables. The model was evaluated against 4 years of observed stream temperature. The model generally predicted daily mean stream temperature accurately (annual RMSE between 0.57 and 1.24 °C) although it overpredicted daily summer stream temperatures by up to 3 °C during extended low streamflow conditions. Model development and testing provided insights on the roles of advection associated with lateral throughflow, channel interception of snow, and surface–subsurface water interactions on stream thermal regimes. This study shows that a relatively simple but process‐based model can provide reasonable stream temperature predictions for forested headwater catchments located in the rain‐on‐snow zone.  相似文献   

20.
The headwater catchments of the Yellow River basin generate over 35% of the basin's total stream flow and play a vital role in meeting downstream water resources requirements. In recent years the Yellow River has experienced significant changes in its hydrological regime, including an increased number of zero‐flow days. These changes have serious implications for water security and basin management. We investigated changes in stream flow regime of four headwater catchments since the 1950s. The rank‐based non‐parametric Mann–Kendall test was used to detect trends in annual stream flow. The results showed no significant trend for the period 1956 to 2000. However, change‐point analysis showed that a significant change in annual stream flow occurred around 1990, and hence the stream‐flow data can be divided into two periods: 1956–1990 and 1991–2000. There was a considerable difference in average annual stream flow between the two periods, with a maximum reduction of 51%. Wet‐season rainfall appears to be the main factor responsible for the decreasing trend in annual stream flow. Reductions in annual stream flow were associated with decreased interannual variability in stream flow. Seasonal stream flow distribution changed from bimodal to unimodal between the two periods, with winter stream flow showing a greater reduction than other seasons. Daily stream flow regime represented by flow duration curves showed that all percentile flows were decreased in the second period. The high flow index (Q5/Q50) reduced by up to 28%, whereas the reduction in the low flow index (Q95/Q50) is more dramatic, with up to 100% reduction. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号