首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An optimisation study of the large‐scale enzymatic synthesis of a liquid wax ester from oleic acid and oleyl alcohol using Novozym 435 was carried out. Investigations were performed in batch mode with a stirred tank reactor (STR) with one multi‐bladed impeller. Response surface methodology (RSM) based on a five‐level, three‐variable central composite rotatable design (CCRD) was used to evaluate the interactive effects of various parameters. The parameters are amount of enzyme (A) (90–120 g), impeller speed (B) (100–400 rpm) and temperature (C) (40–60 °C). The optimum conditions derived via RSM at a fixed reaction time of 1 h were successfully optimised as A = 104 g, B = 388.0 rpm and C = 49.7 °C. The actual experimental yield was 96.7% under the optimum conditions, which compared well with the maximum predicted value of 97.6%. Copyright © 2005 Society of Chemical Industry  相似文献   

2.
BACKGROUND: The synthesis of betulinic acid ester using betulinic acid and oleyl alcohol catalyzed by Novozym 435 (immobilized Candida antarctica lipase) was carried out. Response surface methodology (RSM) based on a five‐level, three‐variable, central composite rotatable design (CCRD) was employed to evaluate the interactive effects of various parameters. The parameters were reaction time (8–16 h), temperature (20–60 °C) and enzyme amount (120–160 mg). RESULTS: Simultaneously increasing reaction time, temperature and amount of enzyme increased the yields of betulinic acid ester produced. CONCLUSION: The optimum conditions derived via RSM for the reaction were reaction time of 10.2 h, temperature of 53.1 °C and enzyme amount of 138 mg. The actual experimental yield was 48.5% under optimum conditions, which compared well with the maximum predicted value of 47.6%. Copyright © 2008 Society of Chemical Industry  相似文献   

3.
Optimization of lipase‐catalyzed esterification for the production of medium‐chain triacylglycerols (MCT) from palm kernel oil distillate and glycerol was carried out in order to determine the factors that have significant effects on the reaction system and MCT yield. Novozyme 435 from Candida antarctica lipase was found to have the highest activity at 52.87 ± 0.03 U/g. This lipase also produced the highest MCT yield, which is 56.67%. The effect of different variables on MCT synthesis was studied with a two‐level five‐factor fractional factorial design. The various variables include (1) reaction temperature, (2) enzyme load, (3) molecular sieves concentration, (4) reaction time and (5) molar substrate ratio. Reaction temperature, reaction time and molar substrate ratio strongly affect MCT synthesis (p <0.05). However, enzyme load and molecular sieve concentration did not have a significant (p >0.05) influence on MCT yield. Therefore, the significant variables such as reaction temperature, reaction time and molar substrate ratio were further optimized through central composite rotatable design (CCRD). Comparisons between predicted and experimental values from the CCRD optimization procedures revealed good correlation, implying that the quadric response model satisfactorily expressed the percentage yield of MCT in the lipase‐catalyzed esterification. The optimum MCT yield is 73.3% by using 2 wt‐% enzyme dosage, a molecular sieves concentration of 1 wt‐%, a reaction temperature of 90 °C, a reaction time of 10 h and a molar substrate ratio of 4 : 1 (medium‐chain fatty acid/glycerol). Experiments to confirm the predicted results using the optimal parameters were conducted and an MCT yield of 70.21 ± 0.18% (n = 3) was obtained.  相似文献   

4.
The ability of immobilized lipase from Candida antarctica (Novozym 435) to catalyze the alcoholysis of canola oil and methanol was investigated. Response surface methodology (RSM) and five–level–five–factor central composite rotatable design (CCRD) were employed to evaluate the effects of synthesis parameters, such as reaction time, temperature, enzyme concentration, substrate molar ratio of methanol to canola oil, and added water content on percentage weight conversion of canola oil methyl ester by alcoholysis. Reaction temperature and enzyme concentration were the most important variables. High temperature and superabundant methanol inhibited the ability of Novozym 435 to catalyze the synthesis of biodiesel. Based on the analysis of ridge max, the optimum synthesis conditions were as follows: reaction time 12.4 h, temperature 38.0 °C, enzyme concentration 42.3%, substrate molar ratio 3.5:1, and added water 7.2%. The predicted value was 99.4% weight conversion, and the actual experimental value was 97.9% weight conversion. Copyright © 2004 Society of Chemical Industry  相似文献   

5.
Immobilized lipase from Mucor miehei (Lipozyme IM-20) was employed in the esterification of butyric acid and isoamyl alcohol to synthesize isoamyl butyrate in n-hexane. Response surface methodology based on five-level, five-variable central composite rotatable design was used to evaluate the effects of important variables—enzyme/substrate (E/S) ratio (5–25 g/mol), acid concentration (0.2–1.0 M), alcohol concentration (0.25–1.25 M), incubation period (12–60 h), and temperature (30–50°C)—on esterification yield of isoamyl butyrate. In the range of parameters studied, the extent of esterification decreased with temperature, lower E/S ratios, and incubation periods. Excess acid and alcohol concentrations (i.e., acid/alcohol >1.4 or alcohol/acid >1.4) were found to decrease yield probably owing to inhibition of the enzyme by acid or alcohol, the former being more severe. The optimal conditions achieved are as follows: E/S ratio, 17 g/mol; acid concentration, 1.0 M; incubation period, 60 h; alcohol concentration, 1.25 M; and temperature, 30°C. With these conditions, the predicted value was 1.0 M ester, and the actual experimental value was 0.98 M.  相似文献   

6.
为了提高造纸法再造烟叶原料烟梗的提取率,以水为溶剂,以提取时间、提取温度、液料比进行3因素5水平的中心组合设计,采用响应面法优化烟梗提取参数,建立数学模型并进行验证。结果表明,最优工艺条件为:提取温度59℃,提取时间45min,液料比9.1:1,对最佳工艺条件提取率的预测值为38.33%,实测值为38.03%,相对误差仅为0.78%。  相似文献   

7.
BACKGROUND: The focus of this paper is the ultrasound‐assisted synthesis of caffeic acid phenethyl ester (CAPE) from caffeic acid and phenyl ethanol in a continuous packed‐bed bioreactor. Immobilized Novozym® 435 (from Candida antarctica) is used as the catalyst. A three‐level–three‐factor Box–Behnken design and a response surface methodology (RSM) are employed to evaluate the effects of temperature, flow rate, and ultrasonic power on the percentage molar conversion of CAPE. RESULTS: Based on ridge max analysis, it is concluded that the optimum condition for synthesis is reaction temperature 72.66 °C, flow rate 0.046 mL min?1, and ultrasonic power 1.64 W cm?2. The expected molar conversion value is 97.84%. An experiment performed under these optimal conditions resulted in a molar conversion of 92.11 ± 0.75%. The enzyme in the bioreactor was found to be stable for at least 6 days. CONCLUSIONS: The lipase‐catalyzed synthesis of CAPE by an ultrasound‐assisted packed‐bed bioreactor uses mild reaction conditions. Enzymatic synthesis of CAPE is suitable for use in the nutraceutical and food production industries. Copyright © 2011 Society of Chemical Industry  相似文献   

8.
The effects of three preparation variables, i.e. reaction temperature, reaction time and reaction gas (methane/nitrogen) flow rate, on the ratio of the intensity of the Raman D band to the intensity of the G band (ID/IG), carbon mass and the presence of radial breathing mode (RBM) peaks were investigated by using a central composite design to develop two linear models. The most influential factor in each experimental design‐response was identified using the analysis of variance. The predicted ID/IG ratio, carbon mass and presence of RBM peaks determined during the process optimisation were found to agree satisfactorily with the experimental values. The optimum conditions for synthesising single‐walled carbon nanotubes were determined to be a reaction temperature of 900°C, a reaction time of 59 min and a reaction gas flow rate of 54 mL/min. © 2011 Canadian Society for Chemical Engineering  相似文献   

9.
In this study, the application of response surface methodology (RSM) and central composite rotatable design (CCRD) for modeling and optimization of the influence of some operating variables on the performance of a multi-gravity separator (MGS) for chromite concentration is discussed. Three MGS operating variables, namely drum speed, tilt angle, and wash water flow rate were changed during the concentration tests based on CCRD. The range of values of the MGS variables used in the design were a drum speed of 133-217 rpm, tilt angle of 1.6°-8.4°, and wash water flow rate of 1.3-4.7 lpm. A total of 20 concentration tests were conducted using MGS on chromite ore obtained from Kangal/Eskikoy—Turkey.In order to optimize chromite concentration with MGS, mathematical model equations were derived by computer simulation programming applying least squares method using MATLAB 7.1. These equations that are second-order response functions representing concentrate grade and recovery were expressed as functions of three operating parameters of MGS. Predicted values were found to be in good agreement with experimental values (R2 values of 0.96 and 0.98 for concentrate grade and recovery, respectively). In order to gain a better understanding of the three variables for optimal MGS performance, the models were presented as 3-D response surface graphs. This study has shown that the RSM and CCRD could efficiently be applied for the modeling of MGS for chromite concentration and it is an economical way of obtaining the maximum amount of information in a short period of time and with the fewest number of experiments.  相似文献   

10.
响应面优化褶皱假丝酵母脂肪酶催化合成木质甾醇油酸酯   总被引:1,自引:0,他引:1  
以木质甾醇转化率为指标,考察了10种常见商业化脂肪酶催化合成木质甾醇油酸酯的效果,确定褶皱假丝酵母脂肪酶(CRL)为优选生物催化剂,进一步筛选出正己烷为优选反应介质.在脂肪酶用量、油酸和木质甾醇的物质的量比、反应温度和反应时间这4个单因素考察基础上,通过响应面分析法对酶催化木质甾醇油酸酯合成工艺条件进行优化,并对优化条件进行验证和放大实验.CRL催化合成木质甾醇油酸酯的优化工艺参数为:CRL添加量为木质甾醇质量的10%,油酸与木质甾醇的物质的量比为3.8:1,反应温度为46℃,反应时间为28 h,木质甾醇的转化率为91.56%±0.25%.  相似文献   

11.
BACKGROUND: In this work we describe the synthesis of ethyl esters, commonly known as biodiesel, using refined soybean oil and ethanol in a solvent‐free system catalyzed by lipase from Thermomyces lanuginosus. Central composite design and response surface methodology (RSM) were employed to optimize the biodiesel synthesis parameters, which were: reaction time, temperature, substrate molar ratio, enzyme content, and added water, measured as percentage of yield conversion. RESULTS: The optimal conditions obtained were: temperature, 31.5 °C; reaction time, 7 h; substrate molar ratio, 7.5:1 ethanol:soybean oil; enzyme content, 15% (g enzyme g−1 oil); added water, 4% (g water g−1 oil). The experimental yield conversion obtained under these conditions was 96%, which is very close to the maximum predicted value of 94.4%. The reaction time‐course at the optimal values indicated that 5 h was necessary to obtain high yield conversions. CONCLUSION: A high yield conversion was obtained under the optimized conditions, with relative low enzyme content and short time. Comparison of predicted and experimental values showed good correspondence, implying that the empirical model derived from RSM can be used to adequately describe the relationship between the reaction parameters and the response (yield conversion) in lipase‐catalyzed biodiesel synthesis. Copyright © 2008 Society of Chemical Industry  相似文献   

12.
朱连燕  王玉明  周幸福 《化工学报》2020,71(3):1335-1342
采用中心复合设计的响应曲面法预测电催化降解染料废水的最优条件。具体以Ti/SnO2-Sb电极作为阳极,应用响应曲面法研究了pH、施加电压值、电极间距对亚甲基蓝溶液脱色效率的影响。研究结果表明模型拟合精度R2=0.9942,初始pH、施加电压值、电极间距及交互作用对脱色率响应值影响大。模型预测最佳反应条件pH为6.98,施加电压6.0 V,电极间距为1.01 cm时,脱色效率预测值达到98.68%。采用实验进一步验证该模型,预测最佳条件下三次实验脱色率平均值98.47%。该方法可用于优化电催化降解染料废水的工艺参数,为实际废水处理提供优化方案。  相似文献   

13.
以月桂酸三甘油酯和甘油为原料,脂肪酶催化甘油解反应合成月桂酸单甘油酯。在单因素试验的基础上,采用响应面分析法进行合成工艺优化。结果表明,含水量(相对于甘油的质量)对月桂酸单甘油酯产率的影响最为显著,且较优合成条件为:恒温振荡器转速100 r/min,酶添加质量分数(相对于底物)5%,n(甘油)∶n(月桂酸三甘油酯)=6∶1,底物质量分数(相对于整个反应体系)51.9%,温度65℃,含水量4.23%,反应时间5 h。在此条件下,月桂酸单甘油酯产率的预测值和实验值分别为81.68%和81.32%,说明二次多项回归模型具有良好的预测性。  相似文献   

14.
In the present study, the effect of adsorbent dose, pH, temperature, initial dye concentration and contact time on malachite green removal from an aqueous medium using hydrilla verticillata biomass has been investigated. The central composite face-centered experimental design (CFCD) in respons surface methodology (RSM) was used for designing the experiments as well as for full response surface estimation. The optimum conditions for maximum removal of malachite green from an aqueous solution of 75.52 mg/L were as follows: adsorbent dose (11.14 g/L), pH (8.4), temperature (48.4°C) and contact time (194.5 min). This was evidenced by the higher value of coefficient of determination (R 2= 0.9158).  相似文献   

15.
16.
于海峰  王洪光  徐元厂  王璐 《陕西化工》2014,(4):688-691,695
以平均粒径、载药量、包封率及总评归一值为评价指标,运用星点设计考察芯材比、油水相比、壳聚糖浓度对微球制备的影响,对结果进行二项式拟合,效应面法选取最佳工艺条件并进行预测分析。结果显示,最佳工艺条件为:油水相比为4.2∶1,壳聚糖浓度为2%,交联时间为3.5 h。在此条件下,制得的微球粒径均一,球形圆整,平均粒径为7.21μm,包封率为61.34%,载药量为70.12%。体外释放行为符合Higuchi方程,2 h和24 h时累积释放率分别为32%和84%。  相似文献   

17.
BACKGROUND: The removal of heavy metals using adsorption techniques with low cost biosorbents is being extensively investigated. The improved adsorption is essentially due to the pores present in the adsorbent. One way of improving the porosity of the material is by irradiation of the precursor using microwaves. In the present study, the adsorption characteristics of nickel onto microwave‐irradiated rice husks were studied and the process variables were optimized through response surface methodology (RSM). RESULT: The adsorption of nickel onto microwave‐irradiated rice husk (MIRH) was found to be better than that of the raw rice husk (RRH). The kinetics of the adsorption of Ni(II) from aqueous solution onto MIRH was found to follow a pseudo‐second‐order model. Thermodynamic parameters such as standard Gibbs free energy (ΔG°), standard enthalpy (ΔH°), and standard entropy (ΔS°) were also evaluated. The thermodynamics of Ni(II) adsorption onto MIRH indicates that it is spontaneous and endothermic in nature. The response surface methodology (RSM) was employed to optimize the design parameters for the present process. CONCLUSION: Microwave‐irradiated rice husk was found to be a suitable adsorbent for the removal of nickel(II) ions from aqueous solutions. The adsorption capacity of the rice husk was found to be 1.17 mg g?1. The optimized parameters for the current process were found as follows: adsorbent loading 2.8 g (100 mL)?1; Initial adsorbate concentration 6 mg L?1; adsorption time 210 min.; and adsorption temperature 35 °C. Copyright © 2008 Society of Chemical Industry  相似文献   

18.
Taguchi method (TM) and response surface methodology (RSM) have been employed to optimize three parameters, including the amounts of P123, the amounts of nitric acid and calcination temperature, in order to define an optimal setting for sol-gel synthesis of high surface area mesoporous alumina powder (MA). Herein, the comparison of the both statistical approaches has been examined and discussed considering the nitrogen adsorption as the response variable because this important character for mesoporous materials is exceedingly sensitive to the synthesis parameters. The BET surface area (SBET) and pore volume of MA under Taguchi optimal condition were 323.5 m2 g−1 and 0.551 cm3 g−1, respectively, by conducting confirmation test. Furthermore, the confirmation test showed high SBET of MA (363.4 m2 g−1), which was in a good agreement with calculated SBET result (431.25 m2 g−1) by a quadratic model under RSM optimal condition. Moreover, 3D response surface plots and 2D contour plots of desirability have been discussed to visualize the influence of input factors on response variable. It is also concluded that RSM shows more appropriate (12.33% higher SBET than TM) and efficient optimal condition with determining a quadratic function as the relationship between SBET and synthesis parameters.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号