首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The band structures, absorption coefficients, and Auger recombination rates in narrow-gap alloys HgCdTe, InTIP, InTlAs, and InTlSb in the zinc blende structure, along with those of GaAs, are calculated using a hybrid pseudopotential and tight-binding method. The composition-dependent band gaps of the thallium-based alloys are reported along with those of several other semiconductor alloys. Within 50 meV from the absorption edge, the absorption coefficient of InxTl1−xP is found to have about the same magnitude as that of HgxCd1−xTe and GaAs, while that of InxTl1−xAs and InxTl1−xSb is much smaller. In agreement with previous theories, the calculated Auger lifetimes in Hg0.78Cd0.22Te with unit or k • p overlap agree very well with experiments. Among the thallium alloys studied, the Auger lifetimes are longest in In0.33Tl0.67P, but still shorter than those in Hg0.78Cd0.22Te by an order of magnitude. In addition, realistic overlaps produce lifetimes one to two orders of magnitude larger than those observed.  相似文献   

2.
We have evaluated three III-V semiconductor alloys—In1−xTlxP (ITP), In1−xTlxAs (ITA), and In1−xTlxSb (ITS)—as possible candidates for future long-wave infrared (LWIR) detector materials. The cohesive energies, elastic constants, band structures, electron mobilities, and phase diagrams are calculated and are compared to those of Hg1−xCdxTe (MCT) alloys. The band gaps of all three III-V alloys change from negative to positive values as the alloy composition x decreases from 1 to 0. The x values for the 0.1-eV gap are estimated to be 0.67, 0.15, and 0.08, respectively, for ITP, ITA, and ITS. While both ITP and ITA form stable zincblende solid solutions for all alloy compositions, zincblende ITS is stable only for a range of x less than 0.15. The complication of the phase diagram in ITS is caused by the existence of a stable CsCl phase for pure TISb. The alloy mixing enthalpies for ITP and ITA are comparable to those in MCT, and their phase diagrams should be qualitatively similar, characterized by simple lensshape liquidus and solidus curves. Both ITP and ITA have considerably larger cohesive energies and elastic constants than those of MCT, indicating that they are structurally robust. At a 0.1-eV gap, the band structures near the gap and the electron mobilities in ITP, ITA, and ITS are also found to be comparable to those of MCT. Since the lattice constants of TIP and TIAs are less than 2% larger than the respective values in InP and InAs, the latter should provide natural substrates for the growth of active LWIR alloys and offer a potential to integrate the detector array and read-out circuit.  相似文献   

3.
We employed AgNO3 solutions for doping Ag in liquid phase epitaxy (LPE) grown Hg0.78Cd0.22Te epilayers and found that the minority carrier lifetimes became longer so that the diode properties improved. After annealing LPE grown Hg(1-x)Cd(x)Te layers (x=0.22) in Hg atmosphere, the epilayers were immersed in an AgNO3 solution at room temperature. The typical carrier concentrations of holes was 3 × 1016 cm−3 at 77K. These values were almost the same as for the nondoped wafers. Also, its acceptor level was 3 to 4 meV. This shows that the Ag was activated. The doped crystals have lifetimes several times longer than those of the nondoped crystals. Numerical fitting showed the lifetime was limited mostly by the Auger 7 process. The Shockley-Read-Hall recombination process was not effective. To examine the Ag-doped wafer, we fabricated photodiodes using standard planar technology. The diodes have an average zero-bias resistance of several MΩ and a shunt resistance of about 1 GΩ for a 10 μm cutoff wavelength at 78K. These values are about four times higher than those of nondoped diodes. The photo current is also two times higher at the same pixel size. This shows that the quantum efficiency is increased. The extension of the lifetime contributes to the high resistance and the high quantum efficiency of the photodiode.  相似文献   

4.
The low incident angle (surface analysis) and the conventional wide angle (bulk analysis) x-ray diffraction techniques were employed to investigate the existence of a miscibility gap in the Hg1−xCdxTe system. Samples of initial composition Hg0.46Cd0.54Te were annealed at 140 and 400°C, respectively, for four weeks. The diffraction planes (531) and (642) have been selected for the x-ray diffraction analysis. The results of this work provide the first, direct experimental evidence for the existence of a miscibility gap at lower temperature in the Hg1−xCdxTe system. The phase separation occurs primarily in a thin surface layer at 140°C and is reversible after annealing at 530°C. The compositions of the two compounds at the tie-line at 140°C are Hg0.22Cd0.78Te and Hg0.63Cd0.37Te.  相似文献   

5.
Although molecular beam epitaxy technology-based arsenic-doped Hg1?x Cd x Te has been extensively studied, according to the newly proposed framework of the defect-complex-based p-type doping mechanism, heavier group V elements such as antimony (Sb) should have a different doping behavior because of their larger radius which can cause larger lattice distortion. In this work, we performed first-principles calculations and took As and Sb as examples to study this issue. The substitutional doping, interstitial doping (including split, tetrahedral, and hexagonal interstitial sites), and defect complex doping forms for arsenic and antimony are all investigated. A significant lattice distortion is found in hexagonal and split-site interstitial-Sb-doped Hg0.75Cd0.25Te due to the larger covalent radius of Sb. Compared with As, Sb can lead to a more complicated configuration change in the case of SbHg-V Hg-SbHg tridoping, and the interstitial Sb is found to be stable even with the coupling of Hg vacancies through detailed energetic calculations, indicating that the interstitial Sb has greater ability to form stable defect complexes, and thus great potential to be a more appropriate p-type dopant. This study provides more complementary understanding of the behaviors of group V impurities in HgCdTe.  相似文献   

6.
The analysis of R0A products as a function of magnetic field in n-on-p diodes using a simple diffusion current model has previously been shown to yield both Jep/Jtotal ratio (the relative contribution of the p-side diffusion current) and μep (the minority carrier, electron mobility). In this paper, we report the good agreement between the experimental and theoretical dependence of μep on the hole concentration over a wide range between 1 x 1016 and 4 x 1017 cm−3 in n-on-p homojunction diodes fabricated on undoped p-type Hg0.78Cd0.22Te liquid phase epitaxial (LPE) films. The averaged Jep/Jtotal ratio varied between 68 and 90% with the hole concentration. These Jep/Jtotal ratios indicate that other leakage current mechanisms than the p-side diffusion current were not negligible. Also, for the first time, comparative measurements were made on p+/n heterojunction diodes consisting of As-doped Hg0.07Cd0.30Te and In-doped Hg0.78Cd0.22Te LPE layers. Unlike a typical change in R0A products by a factor of 2–3 in n-on-p homojunction diodes, the R0A products in p+/n heterojunction diodes at 7 kG were typically only 2–3% higher than that at the zero field. The typical Jep/Jtotal ratio in p+/n heterojunction diodes was about 3–4 %, which confirms the general belief that the p+ cap layer, due to the high doping and a larger bandgap, contributes very little to the total leakage current.  相似文献   

7.
The carrier lifetimes in InxGa1−xAs (InGaAs) and Hg1−xCdxTe (HgCdTe) ternary alloys for radiative and Auger recombination are calculated for temperature 300K in the short wavelength range 1.5<λ<3.7 μm. Due to photon recycling, an order of magnitude enhancements in the radiative lifetimes over those obtained from the standard van Roosbroeck and Shockley expression, has been assumed. The possible Auger recombination mechanisms (CHCC, CHLH, and CHSH processes) in direct-gap semiconductors are investigated. In both n-type ternary alloys, the carrier lifetimes are similar, and competition between radiative and CHCC processes take place. In p-type materials, the carrier lifetimes are also comparable, however the most effective channels of Auger mechanism are: CHSH process in InGaAs, and CHLH process in HgCdTe. Next, the performance of heterostructure p-on-n photovoltaic devices are considered. Theoretically predicted RoA values are compared with experimental data reported by other authors. In0.53Ga0.47As photodiodes have shown the device performance within a factor often of theoretical limit. However, the performance of InGaAs photodiodes decreases rapidly at intermediate wavelengths due to mismatch-induced defects. HgCdTe photodiodes maintain high performance close to the ultimate limit over a wider range of wavelengths. In this context technology of HgCdTe is considerably advanced since the same lattice parameter of this alloy is the same over wide composition range.  相似文献   

8.
This work deals with the study by means of radioactive tracers and autoradiography, as well as measuring of galvanomagnetic properties, of Ga and In doping of epitaxial CdxHg1−xTe layers during their crystallization from a Te-rich melt. Ga and In were introduced in the form of Ga72 and In114 master alloys with Te. The effective distribution coefficients of Ga and In during the crystallization of the CdxHg1−xTe solid solutions with x=0.20 to 0.23 were determined by cooling the Te-base melt to 515–470°C. Depending on the concentration of the dopants and the time-temperature conditions of CdxHg1−xTe growth, these ratios for Ga and In were 1.5–2.0 and 1.0–1.5, respectively. The electrical activity of Ga and In was determined after annealing of the CdxHg1−xTe layers in saturated Hg vapor at 270–300°C. In doping of the epitaxial layers to (3–8)×1014 cm−3 with subsequent annealing in saturated Hg vapor at ∼270°C increases the carrier lifetime approximately by a factor of two as compared with the undoped material annealed under the same conditions.  相似文献   

9.
Transport-related properties such as electron mobility, Hall coefficient, Fermi level, and energy gap are calculated with accurate analytical band structures, Fermi-Dirac statistics, and a full solution to the Boltzmann transport equation. These calculated values differ substantially from the ones obtained with parabolic or k-p generated band structure approximations for a Hg0.78Cd0.22Te alloy. A new way to analyze absorption data to extract the temperature variation of the band gap is also explained.  相似文献   

10.
The growth of epitaxial layers of mercury-cadmium-telluride (Hg1-xCdxTe) with relatively low x (0.2-0.3) from Te-rich solutions in an open tube sliding system is studied. The development of a semiclosed slider system with unique features permits the growth of low x material at atmospheric pressure. The quality of the films is improved by the use of Cd1-yZyTe and Hg1-xCdxTe substrates instead of CdTe. The substrate effects and the growth procedure are discussed and a solidus line at a relatively low temperature is reported. The asgrown epitaxial layers are p-type with hole concentration of the order of 1·1017 cm−3, hole mobility of about 300 cm2·V−1 sec−1 and excess minority carrier life-time of 3 nsec, at 77 K.  相似文献   

11.
A series of n-type, indium-doped Hg1−xCdxTe (x∼0.225) layers were grown on Cd0.96Zn0.04Te(311)B substrates by molecular beam epitaxy (MBE). The Cd0.96Zn0.04Te(311)B substrates (2 cm × 3 cm) were prepared in this laboratory by the horizontal Bridgman method using double-zone-refined 6N source materials. The Hg1−xCdxTe(311)B epitaxial films were examined by optical microscopy, defect etching, and Hall measurements. Preliminary results indicate that the n-type Hg1−xCdxTe(311)B and Hg1−xCdxTe(211)B films (x ∼ 0.225) grown by MBE have comparable morphological, structural, and electrical quality, with the best 77 K Hall mobility being 112,000 cm2/V·sec at carrier concentration of 1.9×10+15 cm−3.  相似文献   

12.
High-density argon-hydrogen plasmas have been demonstrated to be very effective as etchants of CdTe, CdZnTe, and HgCdTe materials for focal plane array applications. Understanding the physical, chemical, and electrical characteristics of these surfaces is critical in elucidating the mechanisms of processing Hg1−xCdxTe. The ways in which these plasmas interact with HgCdTe, such as etch rates and loading, have been studied.1–11 However, little is known on how these plasmas affect the first few atomic layers of HgCdTe. In this study, the effects of high-density plasmas on the surface of HgCdTe were examined. The combination of argon and hydrogen plasma etch leaves a well-ordered, near-stoichiometric surface determined by both x-ray photoelectron spectroscopy and reflection high-energy electron diffraction (RHEED). Starting with Hg0.78Cd0.22Te, we were able to produce surfaces with x=0.4 and a RHEED pattern sharp enough to measure 2×1 reconstruction.  相似文献   

13.
The thermodynamic stability of Cd1?xHgxTe, MnxHg1?xTe, and ZnxHg1?xTe alloys is studied. Calculations performed in the context of the δ lattice-parameter model indicate that CdHgTe and ZnHgTe alloys are stable over the entire range of compositions at typical growth temperatures. At the same time, a miscibility gap is found in MnxHg1?xTe at 0.33 < x < 1 at T = 950 K, which is consistent with the known experimental data. It is shown that the biaxial strains observed in MnxHg1?xTe/CdTe and MnxHg1?xTe/Cd0.96Zn0.04Te thin epitaxial films lead to a narrowing of the miscibility gap and to insignificant lowering of critical temperatures.  相似文献   

14.
Structural properties of Hg1–x Cd x Te are investigated by using first-principles calculations based on density functional theory. An energetically minimized and geometrically optimized model for Hg1–x Cd x Te was formulated. A virtual crystal approximation model for Hg1–x Cd x Te produced a poor fit to experimental lattice parameters and Vegard’s law. However, the virtual crystal approximation model provides reasonably accurate values for the band gap␣energy. An ordered alloy approximation model produced a good fit to Hg1–x Cd x Te lattice parameters and followed Vegard’s law. The ordered alloy approximation also produced a bimodal distribution in Hg-Te and Cd-Te bond lengths in agreement with experimental results.  相似文献   

15.
Cohesive energies, elastic constants, band structures, and phase diagram are calculated to evaluate the In1−xTlxSb alloy (ITA) as a long-wavelength infrared (LWIR) material compared to Hg1−xCdxTe (MCT). To obtain a 0.1 eV gap at zero temperature, the x value for ITA is estimated to be x=0.083 as compared to x=0.222 for MCT. At this gap, ITA is more robust than MCT because the cohesive energies order as InSb>TlSb>CdTe>HgTe, and ITA has the stronger bonding InSb as the majority component. Although TlSb is found to favor the CsCl structure, ITA is a stable alloy in the zincblende structure for low x values. However, our phase diagram indicates that it is difficult to grow the 0.1 eV gap ITA from the melt, because above the eutectic the liquidus curve is flat, and the solidus drops rapidly. Moreover, the width of the stable concentration range of the zincblende solid phase shrinks at low temperatures due to the presence of the CsCl structure.  相似文献   

16.
A new physical model is presented for the illumination-dependence of the zero-bias resistance-area product (R0A) of HgCdTe photodiode. The model is based on three independent mechanisms. They are the depletion region volume change with the applied bias, the diffusion distance change with the moving depletion region edge, and the minority carrier accumulation in the depletion region which affects the minority carrier diffusion. Analytic equations are derived for the photodiode current-voltage characteristics and R0A products. The results of the model have been compared with experimental data obtained from several Hg0.7Cd0.3Te diodes with an identical diode structure having different absorbing amount of light. The model showed good agreement with the experimental data.  相似文献   

17.
The spectral dependence of the optical reflection of n-(Pb0.78Sn0.22)1−x InxTe (x=0.02 and 0.03) and p-Pb0.78Sn0.22Te doped with 3 at. % In and 1.5 at. % Tl has been investigated at T=300 K. Minima associated with plasma vibrations of the free carriers were observed in all the experimental spectra. The electron density n and the hole density p were estimated by the Kukharskii-Subashiev method. It is shown that the value of n so obtained is much smaller than its value obtained from the Hall effect only in n-(Pb0.78Sn0.22)0.97In0.03Te in which, as had been assumed previously, hopping conductivity dominates. This result may be viewed as an independent experimental confirmation of the unusual character of conduction in n-(Pb0.78Sn0.22)1−x InxTe solid solutions with high indium content. Fiz. Tekh. Poluprovodn. 32, 1047–1048 (September 1998)  相似文献   

18.
A study on preparation of Cd0.96Zn0.04Te(211)B substrates for growth of Hg1−xCdxTe epitaxial layers by molecular beam epitaxy (MBE) was investigated. The objective was to investigate the impact of starting substrate surface quality on surface defects such as voids and hillocks commonly observed on MBE Hg1−xCdxTe layers. The results of this study indicate that, when the Cd0.96Zn0.04Te(211)B substrates are properly prepared, surface defects on the resulting MBE Hg1−xCdxTe films are reduced to minimum (size, ∼0.1 m and density ∼500/cm2) so that these MBE Hg1−xCdx Te films have surface quality as good as that of liquid phase epitaxial (LPE) Hg1−xCdxTe films currently in production in this laboratory.  相似文献   

19.
Optical reflectance spectra of (Pb0.78Sn0.22)1?xInxTe with a high indium content have been studied at T=300 K. Spectral features related to composition heterogeneity in the solid solutions were revealed. An assumption has been made that these heterogeneities are manifested as systems of ordered “threads.” Direct evidence of the existence of heterogeneities in (Pb0.78Sn0.22)1?xInxTe has been obtained by studying the surface morphology using optical and scanning electron microscopy.  相似文献   

20.
We report on a theoretical and experimental study of acceptor bound exciton recombination. We present calculations of phononless Auger and radiative recombination in direct and indirect band gap materials. We consider hydrogenic acceptors in the direct band gap material Hg1−xCdxTe in which the band gap can be varied by changing alloy composition. We present calculations of the Auger transition rate and no-phonon oscillator strengths for the common acceptors in Si and Ge. We have measured the bound exciton lifetimes and no-phonon oscillator strengths for the acceptors in Si and find reasonable agreement with the calculated values.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号