首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cell-cycle-dependent telomere elongation by telomerase in budding yeast   总被引:1,自引:0,他引:1  
Li S 《Bioscience reports》2011,31(3):169-177
Telomeres are essential for the stability and complete replication of linear chromosomes. Telomere elongation by telomerase counteracts the telomere shortening due to the incomplete replication of chromosome ends by DNA polymerase. Telomere elongation is cell-cycle-regulated and coupled to DNA replication during S-phase. However, the molecular mechanisms that underlie such cell-cycle-dependent telomere elongation by telomerase remain largely unknown. Several aspects of telomere replication in budding yeast, including the modulation of telomere chromatin structure, telomere end processing, recruitment of telomere-binding proteins and telomerase complex to telomere as well as the coupling of DNA replication to telomere elongation during cell cycle progression will be discussed, and the potential roles of Cdk (cyclin-dependent kinase) in these processes will be illustrated.  相似文献   

2.
Telomeres are structures composed of repetitive DNA and proteins that protect the chromosomal ends in eukaryotic cells from fusion or degradation, thus contributing to genomic stability. Although telomere length varies between species, in all organisms studied telomere length appears to be controlled by a dynamic equilibrium between elongating mechanisms (mainly addition of repeats by the enzyme telomerase) and nucleases that shorten the telomeric sequences. Two previous studies have analyzed a collection of yeast deletion strains (deleted for nonessential genes) and found over 270 genes that affect telomere length (Telomere Length Maintenance or TLM genes). Here we complete the list of TLM by analyzing a collection of strains carrying hypomorphic alleles of most essential genes (DAmP collection). We identify 87 essential genes that affect telomere length in yeast. These genes interact with the nonessential TLM genes in a significant manner, and provide new insights on the mechanisms involved in telomere length maintenance. The newly identified genes span a variety of cellular processes, including protein degradation, pre-mRNA splicing and DNA replication.  相似文献   

3.
The Tbf1 and Reb1 proteins are present in yeast subtelomeric regions. We establish in this work that they inhibit telomerase-dependent lengthening of telomere. For example, tethering the N-terminal domain of Tbf1 and Reb1 in a subtelomeric region shortens that telomere proportionally to the number of domains bound. We further identified a 90 amino-acid long sequence within the N-terminal domain of Tbf1 that is necessary but not sufficient for its length regulation properties. The role of the subtelomeric factors in telomere length regulation is antagonized by TEL1 and does not correlate with a global telomere derepression. We show that the absence of TEL1 induces an alteration in the structure of telomeric chromatin, as defined biochemically by an increased susceptibility to nucleases and a greater heterogeneity of products. We propose that the absence of TEL1 modifies the organization of the telomeres, which allows Tbf1 and Reb1 to cis-inhibit telomerase. The involvement of subtelomeric factors in telomere length regulation provides a possible mechanism for the chromosome-specific length setting observed at yeast and human telomeres.  相似文献   

4.
Liti G  Louis EJ 《Molecular cell》2003,11(5):1373-1378
In a search for genes involved in cell-type-dependent chromosome instability, we have found a role for NEJ1, a regulator of nonhomologous end joining (NHEJ), in cells that survive in the absence of telomerase. In yeast, NHEJ is regulated by mating-type status through NEJ1, which is repressed in a/alpha cells. For efficient NHEJ, NEJ1 is required as part of a complex with LIF1 and DNL4, which catalyzes DNA ligation. In haploid cells without telomerase, we find that the absence of NEJ1 results in high frequencies of circular chromosomes in type II survivors (i.e., those typified by lengthened telomere repeat tracts). These telomere fusion events are DNL4 dependent. NEJ1 therefore has a role in protecting telomeres from end fusions by NHEJ in the absence of telomerase that contrasts with its role in promoting repair at sites of DNA double-strand breaks.  相似文献   

5.
Some human cancer cells achieve immortalization by using a recombinational mechanism termed ALT (alternative lengthening of telomeres). A characteristic feature of ALT cells is the presence of extremely long and heterogeneous telomeres. The molecular mechanism triggering and maintaining this pathway is currently unknown. In Kluyveromyces lactis, we have identified a novel allele of the STN1 gene that produces a runaway ALT-like telomeric phenotype by recombination despite the presence of an active telomerase pathway. Additionally, stn1-M1 cells are synthetically lethal in combination with rad52 and display chronic growth and telomere capping defects including extensive 3' single-stranded telomere DNA and highly elevated subtelomere gene conversion. Strikingly, stn1-M1 cells undergo a very high rate of telomere rapid deletion (TRD) upon reintroduction of STN1. Our results suggest that the protein encoded by STN1, which protects the terminal 3' telomere DNA, can regulate both ALT and TRD.  相似文献   

6.
Melnikova L  Georgiev P 《Genetics》2002,162(3):1301-1312
Telomeres of Drosophila melanogaster contain arrays of the retrotransposon-like elements HeT-A and TART. Terminally deleted chromosomes can be maintained for many generations. Thus, broken chromosome ends behave as real telomeres. It was previously shown that gene conversion may extend the broken ends. Here we found that the frequency of terminal DNA elongation by gene conversion strongly depends on the genotype. A dominant E(tc) (Enhancer of terminal gene conversion) mutation markedly increases the frequency of this event but does not significantly influence the frequency of HeT-A and TART attachment to the broken chromosome end and recombination between directly repeated sequences at the end of the truncated chromosome. The E(tc) mutation was mapped to the 91-93 region on chromosome 3. Drosophila lines that bear the E(tc) mutation for many generations have telomeres, consisting of HeT-A and TART elements, that are longer than those found in wild-type lines. Thus, the E(tc) mutation plays a significant role in the control of telomere elongation in D. melanogaster.  相似文献   

7.
The Cbf5 protein of Saccharomyces cerevisiae was originally identified as a low-affinity centromeric DNA-binding protein, and cbf5 mutants have a defect in rRNA synthesis. A closely related protein from mammals, NAP57, is a nucleolar protein that coimmunoprecipitates with the nucleolar phosphoprotein Nopp140. To study the function of this protein family in a higher eukaryote that is amenable to genetic approaches, the gene encoding a Drosophilamelanogaster homolog, Nop60B, was identified. The predicted Drosophila protein shares a high degree of sequence identity over a 380-residue region with both the mammalian and yeast proteins, and shares several conserved motifs with the prokaryotic tRNA pseudouridine 55 synthases. Nop60B RNA is found at high levels in nurse cells and in the oocyte, and is present throughout development. Nop60B protein is localized primarily to the nucleolus of interphase cells, and is absent from the chromosomes during mitosis. Nop60B mutants were generated and shown to be homozygous lethal. The Drosophila gene can rescue the lethal phenotype of yeast cbf5 mutations, showing that the function of this protein has been conserved from yeast to Drosophila.  相似文献   

8.
A mutant with a defect in telomere elongation leads to senescence in yeast   总被引:105,自引:0,他引:105  
V Lundblad  J W Szostak 《Cell》1989,57(4):633-643
We describe a general assay designed to detect mutants of yeast that are defective for any of several aspects of telomere function. Using this assay, we have isolated a mutant that displays a progressive decrease in telomere length as well as an increased frequency of chromosome loss. This mutation defines a new gene, designated EST1 (for ever shorter telomeres). Null alleles of EST1 are not immediately inviable; instead, they have a senescence phenotype, due to the gradual loss of sequences essential for telomere function, leading to a progressive decrease in chromosomal stability and subsequent cell death.  相似文献   

9.
UBA 1: an essential yeast gene encoding ubiquitin-activating enzyme.   总被引:23,自引:2,他引:21       下载免费PDF全文
All known functions of ubiquitin are mediated through its covalent attachment to other proteins. The post-translational formation of ubiquitin--protein conjugates is preceded by an ATP-requiring step in which the carboxyl terminus of ubiquitin is adenylated and subsequently joined, through a thiolester bond, to a cysteine residue in the ubiquitin-activating enzyme, also known as E1. We report the isolation and functional analysis of the gene (UBA1) for the ubiquitin-activating enzyme of the yeast Saccharomyces cerevisiae. UBA1 encodes a 114 kd protein whose amino acid sequence contains motifs characteristic of nucleotide-binding sites. Expression of catalytically active UBA1 protein in E. coli, which lacks the ubiquitin system, confirmed that the yeast UBA1 gene encodes a ubiquitin-activating enzyme. Deletion of the UBA1 gene is lethal, demonstrating that the formation of ubiquitin--protein conjugates is essential for cell viability.  相似文献   

10.
In fission yeast the Weel kinase and the functionally redundant Mikl kinase provide a regulatory mechanism to ensure that mitosis is initiated only after the completion of DNA synthesis. Yeast in which both Weel and Mik1 kinases are defective exhibit a mitotic catastrophe phenotype, presumably due to premature entry into mitosis. Because of the functional conservation of cell cycle control elements, the expression of a vertebrate weel or mikl homolog would be expected to rescue such lethal mutations in yeast. A Xenopus total ovary cDNA library was constructed in a fission yeast expression vector and used to transform a yeast temperature-dependent mitotic catastrophe mutant defective in both weel and mikl. Here we report the identification of a Xenopus cDNA clone that can rescue several different yeast mitotic catastrophe mutants defective in Weel kinase function. The expression of this clone in a weel/mikl-deficient mutant causes an elongated cell phenotype under non-permissive growth conditions. The 2.0 kb cDNA clone contains an open reading frame of 1263 nucleotides, encoding a predicted 47 kDa protein. Bacterially expressed recombinant protein was used to raise a polyclonal antibody, which specifically recognizes a 47 kDa protein from Xenopus oocyte nuclei, suggesting the gene encodes a nuclear protein in Xenopus. The ability of this cDNA to complement mitotic catastrophe mutations is independent of Weel kinase activity.  相似文献   

11.
12.
13.
Little is known about the genes that regulate telomere length diversity between mammalian species. A candidate gene locus was previously mapped to a region on distal mouse Chr 2q. Within this region, we identified a gene similar to the dog-1 DNA helicase-like gene in C. elegans. We cloned this Regulator of telomere length (Rtel) gene and inactivated its expression in mice. Rtel(-/-) mice died between days 10 and 11.5 of gestation with defects in the nervous system, heart, vasculature, and extraembryonic tissues. Rtel(-/-) embryonic stem cells showed telomere loss and displayed many chromosome breaks and fusions upon differentiation in vitro. Crosses of Rtel(+/-) mice with Mus spretus showed that Rtel from the Mus musculus parent is required for telomere elongation of M. spretus chromosomes in F1 cells. We conclude that Rtel is an essential gene that regulates telomere length and prevents genetic instability.  相似文献   

14.
Isolation of the yeast calmodulin gene: calmodulin is an essential protein   总被引:63,自引:0,他引:63  
T N Davis  M S Urdea  F R Masiarz  J Thorner 《Cell》1986,47(3):423-431
Calmodulin was purified from Saccharomyces cerevisiae based on its characteristic properties. Like other calmodulins, the yeast protein is small, heat-stable, acidic, retained by hydrophobic matrices in a Ca2+-dependent manner, exhibits a pronounced Ca2+-induced shift in electrophoretic mobility, and binds 45Ca2+. Using synthetic oligonucleotide probes designed from the sequences of two tryptic peptides derived from the purified protein, the gene encoding yeast calmodulin was isolated. The gene (designated CMD1) is a unique, single-copy locus, contains no introns, and resides on chromosome II. The amino acid sequence of yeast calmodulin shares 60% identity with other calmodulins. Disruption or deletion of the yeast calmodulin gene results in a recessive-lethal mutation; thus, calmodulin is essential for the growth of yeast cells.  相似文献   

15.
16.
In fission yeast the Weel kinase and the functionally redundant Mikl kinase provide a regulatory mechanism to ensure that mitosis is initiated only after the completion of DNA synthesis. Yeast in which both Weel and Mik1 kinases are defective exhibit a mitotic catastrophe phenotype, presumably due to premature entry into mitosis. Because of the functional conservation of cell cycle control elements, the expression of a vertebrate weel or mikl homolog would be expected to rescue such lethal mutations in yeast. A Xenopus total ovary cDNA library was constructed in a fission yeast expression vector and used to transform a yeast temperature-dependent mitotic catastrophe mutant defective in both weel and mikl. Here we report the identification of a Xenopus cDNA clone that can rescue several different yeast mitotic catastrophe mutants defective in Weel kinase function. The expression of this clone in a weel/mikl-deficient mutant causes an elongated cell phenotype under non-permissive growth conditions. The 2.0 kb cDNA clone contains an open reading frame of 1263 nucleotides, encoding a predicted 47 kDa protein. Bacterially expressed recombinant protein was used to raise a polyclonal antibody, which specifically recognizes a 47 kDa protein from Xenopus oocyte nuclei, suggesting the gene encodes a nuclear protein in Xenopus. The ability of this cDNA to complement mitotic catastrophe mutations is independent of Weel kinase activity.  相似文献   

17.
Chiron S  Suleau A  Bonnefoy N 《Genetics》2005,169(4):1891-1901
The translation elongation factor EF-Tu is a GTPase that delivers amino-acylated tRNAs to the ribosome during the elongation step of translation. EF-Tu/GDP is recycled by the guanine nucleotide exchange factor EF-Ts. Whereas EF-Ts is lacking in S. cerevisiae, both translation factors are found in S. pombe and H. sapiens mitochondria, consistent with the known similarity between fission yeast and human cell mitochondrial physiology. We constructed yeast mutants lacking these elongation factors. We show that mitochondrial translation is vital for S. pombe, as it is for human cells. In a genetic background allowing the loss of mitochondrial functions, a block in mitochondrial translation in S. pombe leads to a major depletion of mtDNA. The relationships between EF-Ts and EF-Tu from both yeasts and humans were investigated through functional complementation and coexpression experiments and by a search for suppressors of the absence of the S. pombe EF-Ts. We find that S. cerevisiae EF-Tu is functionally equivalent to the S. pombe EF-Tu/EF-Ts couple. Point mutations in the S. pombe EF-Tu can render it independent of its exchange factor, thereby mimicking the situation in S. cerevisiae.  相似文献   

18.
Histones of heterochromatin are deacetylated in yeast and methylated in more complex eukaryotes to regulate heterochromatin structure and gene silencing. Here, we report that histone H2A phosphorylated at serine 129 (γH2A) in Saccharomyces cerevisiae is a conceptually new type of heterochromatin modification that functions downstream of silent chromatin assembly. We show that γH2A is enriched throughout yeast telomeric and silent mating locus (HM) heterochromatin where γH2A results from the action of kinases Tel1 and Mec1. Interestingly, mutation of γH2A has no apparent effect on the binding of Sir (silent information regulator) complex or on gene silencing. In contrast, deletion of SIR3 abolishes the formation of γH2A at heterochromatin. To address the function of γH2A, we used a Δrif1 mutant strain in which telomeres are excessively elongated to show that γH2A is required for the optimal recruitment of Cdc13, a regulator of telomere elongation, and for telomere elongation itself. Thus, a histone modification that parallels Sir3 protein binding is shown here to be dispensable for the formation of a silent structure but is important for a crucial heterochromatin-specific downstream function in telomere homeostasis.  相似文献   

19.
Telomere length homeostasis is achieved by a balance of telomere shortening caused by DNA replication and nucleolytic attack and telomere lengthening by telomerase. The importance of telomere length maintenance to human health is best illustrated by dyskeratosis congenita (DC), a disease of telomere shortening caused by mutations in telomerase subunits. DC patients suffer stem cell depletion and die of bone marrow stem cell failure. Recently a new class of particularly severe DC patients was found to harbor mutations in the shelterin subunit TIN2. The DC-TIN2 mutations were clustered in small domain of unknown function. In a recently published study we showed that the DC mutation cluster in TIN2 harbored a binding site for heterochromatin protein 1 (HP1) and, further, that HP1 binding to TIN2 was required for sister telomere cohesion in S phase and for telomere length maintenance by telomerase. We briefly review and discuss the implications of our findings in this Extra View and present some new data that may shed light on how sister telomere cohesion could influence telomere elongation by telomerase.Key words: telomeres, cohesion, telomerase, TIN2, dyskeratosis congenita  相似文献   

20.
Telomere length homeostasis is achieved by a balance of telomere shortening caused by DNA replication and nucleolytic attack and telomere lengthening by telomerase. The importance of telomere length maintenance to human health is best illustrated by dyskeratosis congenita (DC) a disease of telomere shortening caused by mutations in telomerase subunits. DC patients suffer stem cell depletion and die of bone marrow stem cell failure. Recently a new class of particularly severe DC patients was found to harbor mutations in the shelterin subunit TIN2. The DC-TIN2 mutations were clustered in small domain of unknown function. In a recently published study we showed that the DC mutation cluster in TIN2 harbored a binding site for heterochromatin protein 1 (HP1) and further, that HP1 binding to TIN2 was required for sister telomere cohesion in S phase and for telomere length maintenance by telomerase. We briefly review and discuss the implications of our findings in this Extra View, and present some new data that may shed light on how sister telomere cohesion could influence telomere elongation by telomerase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号