首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Cation grain‐boundary diffusion in undoped and aliovalent‐doped Al2O3 is characterized using Cr2O3 as a chemical tracer. The compositional depth profiles measured by secondary ion mass spectrometry are fitted to the Whipple‐LeClaire model. The results indicate that cation grain‐boundary diffusivity is insensitive to MgO and SiO2 dopants between 1100°C and 1300°C.  相似文献   

2.
Symmetrical Σ7 tilt grain boundaries of alumina (Al2O3) were studied using bicrystals. Three types of Σ7 boundaries were successfully fabricated, that is, rhombohedral twin (Σ7{1[Onemacr]02}) and two types of [0001] symmetrical tilt grain boundaries with grain-boundary planes {4[Fivemacr]10} and {2[Threemacr]10} (Σ7{4[Fivemacr]10} and Σ7{2[Threemacr]10}). Their atomic structures and grain-boundary energies were investigated using high-resolution transmission electron microscopy (HRTEM) and a thermal grooving technique, respectively. HRTEM observations showed that the Σ7{1[Onemacr]02} boundary had a completely symmetrical atomic arrangement with respect to the grain-boundary plane. In contrast, Σ7{2[Threemacr]10} and Σ7{4[Fivemacr]10} boundaries exhibited asymmetrical atomic structures, which were confirmed by analyzing the atomic configurations using static lattice calculations. Thermal grooving experiments showed that the grain-boundary energies strongly depended on the properties of the grain-boundary planes.  相似文献   

3.
Gadolinium‐doped ceria (GDC) and yttria‐stabilized zirconia (YSZ) are well‐known electrolyte materials in solid oxide fuel cells (SOFCs). Although they can be used independently, it is common to find them in combination in SOFCs, where they are used as protective layers against the formation of secondary phases or electron conduction blockers. Despite their different optimum operating temperatures, it appears that oxygen conduction is not affected by their interface. However, the intrinsic mechanisms of oxygen diffusion at these interfaces still remain unclear. One of the main difficulties when modeling the contact between different materials, or indeed different particles of the same material, is caused by the structural complexity of these systems. If we wish to evaluate the properties of the materials, we first need to obtain a model that includes the main features of the GDC/YSZ interface, such as large‐scale defects or cation interdiffusion in the contiguous phase. Since the generation of such a mixed system is complicated, we show here how the “amorphization and recrystallization” strategy can help us to obtain realistic systems. In this, the first of our papers on the structure and properties of layered GDC/YSZ materials, we discuss the structural features of the grain boundary between GDC and YSZ obtained by molecular dynamics simulations.  相似文献   

4.
A stereological method has been used to determine the degree of grain boundary-pore contact during sintering of Al2O3. Al2O3 doped with 200 ppm MgO exhibits a degree of contact of 5.7 times that expected from random intersections with pores, while pure Al2O3 shows a pore contact factor of 4.8. These data are larger than the values of 2.8 for sintered or hot-pressed UO2, computed from published data, and values of 1.7 and 1.8 for sintered W and Cu powders, respectively. The degree of grain boundary-pore contact for each material remains constant throughout densification from pressed powder to near full density.  相似文献   

5.
Stagnation of grain growth is often attributed to impurity segregation, which becomes more severe as the grain size grows. In this respect, there is no evidence for segregation‐induced slowdown in the grain growth of yttria‐stabilized cubic zirconia, which obeys the parabolic law when the size increases by more than ten times. However, lowering the temperature below 1300°C triggers an abrupt slowdown, constraining the average grains to grow by less than 0.5 μm in 1000 hours despite a relatively large driving force imparted in the fine grains of ~0.5 μm. Yet isolated pockets of abnormally large grains, and even most remarkably, pockets of abnormally small grains, emerge in the same latter sample. Such extreme bifurcation of microstructure has never been observed before, and can be explained by an inhomogeneous distribution of immobile four‐grain junctions. The implications of these findings for two‐step sintering are discussed.  相似文献   

6.
Activation energy and diffusion kinetics are important factors for grain growth and densification. Here, Bi2O3 was introduced into Li0.43Zn0.27Ti0.13Fe2.17O4 ferrite ceramics via a presintered process to lower the reaction activation energy and to achieve low temperature sintering. Interestingly, Bi3+ ions entered the lattice and substituted for Fe3+ in the B‐site (i.e., a pure LiZn spinel ferrite). Also, SEM image results show that Bi2O3‐substituted LiZn ferrite ceramics have low critical temperature for grain growth (920°C), which is very advantageous for LTCC technology. This indicates that Bi2O3 is an excellent dopant for ceramics. Furthermore, to promote normal grain growth of the ceramics at low temperatures, different volumes of V2O5 additive were added at the final sintering stage. Results indicate that an optimal volume of V2O5 additive promotes grain growth (with no abnormal grains) and enhances magnetic performances of the ceramics at low sintering temperature. Finally, adding the optimal volume of V2O5 additive resulted in a homogeneous and compact LiZnTiBi ferrite ceramic with larger grains (average size of ~8 μm), high 4πMs (~4100 gauss), and low ΔH (~190 Oe) obtained (at 900°C). Moreover, the doping method reported in this study also provides a reference for other low temperature sintered ceramics.  相似文献   

7.
Texture development in alumina that contains calcia and silica and has been templated with platelet-shaped α-Al2O3 particles has been evaluated. The texture fraction is shown to be related directly to template growth. Texture quality is controlled by the template concentration, decreasing at template concentrations of >10%, as a result of template–template interactions during tape casting. Almost fully textured alumina has been obtained at template concentrations of ≥20%. The growth of template grains is much more rapid in the radial direction and is shown to be inversely related to the thickness of the grain-boundary liquid. The activation energy for growth (376 kJ/mol) and the inverse relation with the grain-boundary thickness indicate that template growth in the radial direction is controlled by Al3+ diffusion.  相似文献   

8.
Three‐phase ceramic composites constituted from equal volume fractions of α‐Al2O3, MgAl2O4 spinel, and cubic 8 mol% Y2O3‐stabilized ZrO2 (8YSZ) were flash‐sintered under the influence of DC electric fields. The temperature for the onset of rapid densification (flash sintering) was measured using a constant heating rate at fields of 50‐500 V/cm. The experiments were carried out by heating the furnace at a constant rate. Flash sintering occurred at a furnace temperature of 1350°C at a field of 100 V/cm, which dropped to 1150°C at a field of 500 V/cm. The sintered densities ranged from 90% to 96%. Higher electric fields inhibited grain growth due to the lowering of the flash temperature and an accelerated sintering rate. During flash sintering, alumina reacted with the spinel phase to form a high‐alumina spinel solid solution, identified by electron dispersive spectroscopy and from a decrease in the spinel lattice parameter as measured by X‐ray diffraction. It is proposed that the solid solution reaction was promoted by a combination of electrical field and Joule heating.  相似文献   

9.
One of the main challenges in the study of TRISO (Tristructural Isotropic) coated fuel particles is the understanding of the diffusion of fission products through SiC. Among the elements produced inside the uranium kernel, it has been suggested that Pd might enhance the diffusion of other fission products. In this work, we have studied the interaction between Pd and SiC. We have observed that as Pd diffuses it can change the chemical composition and microstructure of SiC. Electron Backscattered Diffraction (EBSD) analysis showed that Pd increased the amount of high angle grain boundaries from 47% to 59%. Furthermore, we have observed that as Pd diffused, it changed the composition of SiC by leaving a trail of excess carbon at the grain boundary. This change in localized chemical composition and microstructure suggests a grain boundary complexion transition induced by Pd and a new way in which Pd can lead to faster diffusion routes for other fission products.  相似文献   

10.
Effect of Liquid Content on the Abnormal Grain Growth of Alumina   总被引:4,自引:0,他引:4  
Alumina specimens with small amounts of CaO and TiO2 were prepared and their microstructural evolution during sintering was investigated. Because of the appearance of a liquid phase during sintering, a duplex microstructure of a few abnormal grains and fine matrix grains was obtained when the CaO + TiO2 content was small (≤0.04 wt%). When the CaO + TiO2 content was relatively high (≥0.1 wt%), many grains grew and impinged upon each other. As a result, a rather uniform and homogeneous microstructure was observed.  相似文献   

11.
The benefits of MgO doping of alumina for maintaining a homogeneous grain structure have long been established. Therefore in this work a bespoke ink for Robocasting of alumina is developed based on the gelation of alginic acid using magnesium ions, thereby ensuring homogeneous MgO doping of the alumina green body. The shear thinning behavior of alginic acid based solutions was paired with the rheological properties of a partially coagulated colloidal suspension to allow high solid loading inks (up to 50 vol%) with good extrusion behavior. Shear thinning coefficients of n ~ 0.2 were recorded, with yield stresses of 250 Pa and stiffness values in the range 100‐1000 kPa. The printed alumina bars reached densities of >98% and unpolished strengths reached up to 326 ± 16 MPa after sintering at 0.4 mol/L magnesium chloride and 45 vol% alumina.  相似文献   

12.
Development of the grain-boundary microstructure with heat treatment at 800° to 1500°C was examined for a group of 96% Al2O3 ceramics containing a high-MgO boundary phase. Using a combination of analytical and conventional electron microscopy techniques, eight different crystalline phases were detected at the boundaries following annealing. Despite the extensive devitrification, however, a residual glass remained in all samples examined, and is believed to be continuous.  相似文献   

13.
The effect of titania content on the densification, the phase transformation, the microstructures, and mechanical properties of 50 wt% Al2O3‐50 wt% ZrO2 (12 mol% CeO2) was evaluated. Ceramic composites with different TiO2 content (0.27, 5, 10 wt%) were prepared by pressureless sintering at low temperature (1400°C) for 2 hours in air. Dense ceramic was obtained by adding 5 wt% of TiO2 loading to improved mechanical properties. The microstructure analysis provided lots of information about solid‐state reactivity in alumina‐zirconia‐titania ternary system. The content of TiO2 strongly affected the phases evolution and the grain growth during sintering. Furthermore, a significant effect on mechanical properties and fracture behavior was also observed.  相似文献   

14.
Symmetrical tilt grain boundaries (STGBs) on the (10¯10), (¯2112), and (01¯18) planes in α-Al2O3 have been investigated for their behavior with respect to yttrium doping by performing a combined study of high-resolution transmission electron microscopy and spatially resolved energy dispersive X-ray analysis. Bicrystals have been produced by diffusion bonding under ultrahigh vacuum; yttrium was introduced before the bonding process. The prismatic twin has a bulklike grain boundary (GB) structure and does not accommodate any yttrium at the GB. The yttrium at the Σ17 (¯2112) GB and the Σ37 (01¯18) GB changes the GB structure and the content of other impurities.  相似文献   

15.
The grain-growth behavior of Al2O3 compacts with small contents (≤10 wt%) of various liquid-forming dopants was studied. Equiaxed and/or elongated grains were observed for the following dopants: MgO, CaO, SiO2, or CaO + TiO2. The platelike grains, defined as the abnormal grains larger than 100 μm with an aspect ratio ≥5 and with flat boundaries along the long axis, were observed when the boundaries were wet with the liquid phase and the codoping satisfied two conditions of size and valence. These dopings were Na2O + SiO2, CaO + SiO2, SrO + SiO2, or BaO + SiO2. However, an addition of MgO to the Al2O3 doped with CaO + SiO2 resulted in the change of grain shape from platelike to equiaxial. Equiaxed grains were also observed for the MgO + SiO2 doping, indicating that two conditions were necessary but not sufficient to develop the platelike grains. The fast growth rate of the platelike grains was explained by an increased interfacial reaction rate due to the codopants. AT the same time the codopants made the basal plane, which appeared as the flat boundaries, the lowest energy plane. The appearance of the platelike grains was favored in compacts with a small grain size and with a narrow size distribution at the onset of abnormal grain growth. Accordingly, the use of starting powders with a small particle size and narrow size distribution, smaller amounts of dopings, and high sintering temperature resulted in an increased number of the platelike grains.  相似文献   

16.
By mapping grain orientations on parallel serial sections of a SrTiO3 ceramic, it was possible to reconstruct three-dimensional orientation maps containing more than 3000 grains. The grain boundaries were approximated by a continuous mesh of triangles and mean curvatures were determined for each triangle. The integral mean curvatures of grain faces were determined for all grains. Small grains with fewer than 16 neighbors mostly have positive mean curvatures while larger grains with more than 16 neighbors mostly have negative mean curvatures. It is also possible to correlate the mean curvature of individual triangles with the crystallographic characteristics of the grain boundary. The mean curvature is lowest for grain boundaries with (100) orientations and highest for grain boundaries with (111) orientations. This trend is inversely correlated to the relative areas of grain boundaries and directly correlated to the relative grain boundary energy. The direct correlation between the energy and curvature is consistent with the expected behavior of grain boundaries made up of singular orientations. Furthermore, because both the relative energy and curvature of grain boundaries with (100) orientations are minima in the distributions, these boundaries also have the lowest driving force for migration.  相似文献   

17.
The primary characteristic of nanopowders is the high surface area and consequently high fraction of atoms on the interfaces, which changes the energy of the system. The additive distribution in the nanopowder interfaces is a fundamental aspect to control the energy, particle size, and final properties of nanopowders. In this work, the surface excess was determined using a selective lixiviation method, where a low‐water‐soluble oxide, SnO2, was used as the matrix, and a high‐water‐soluble oxide, ZnO, was used as the additive. The X‐ray photoelectron spectroscopy (XPS) analysis confirmed that ZnO segregated on SnO2 surfaces. However, after acid lixiviation the same analysis showed an undetectable surface concentration of ZnO. The evaluation of the nanostructure change and surface composition enables us to calculate the heat of segregation for the grain boundary and surface and the interface energy reduction because of segregation. At low‐ZnO concentrations, the additive solubilizes in the bulk and promotes particle growth. However, the segregation to the grain boundary and surface determines the relative stability of each interface, which promotes hard agglomeration and particle size stabilization at intermediated ZnO amounts. At high‐ZnO concentrations, the surface segregation stabilizes the solid‐gas interface and decreases the agglomeration and final particle size.  相似文献   

18.
Several low-index symmetrical tilt grain boundaries in α-Al2O3 were investigated by combining high-resolution transmission electron microscopy and spatially resolved energy dispersive X-ray analysis. Bicrystals with a well-defined orientation relation and interface plane were produced by diffusion bonding under ultrahigh vacuum. Grain boundaries like the prismatic and rhombohedral twin develop an atomically sharp and clean interface, whereas higher index grain boundary (GB) planes show a more complex structure and are able to accommodate both Si and Ca in the interface. Additionally, it was found that asymmetric GB planes which occur as facets at rhombohedral and prismatic twins also accommodate impurity atoms.  相似文献   

19.
The role of reactive elements (RE) is an important topic in understanding the oxidation behavior of high-temperature alloys. In this work, the influence of codoping alumina with two different RE elements (500 ppm Hf + 500 ppm La) was studied. The kinetics of oxygen grain-boundary (GB) transport were studied at 1400°C using metallic nickel particles as markers. The results were compared with data obtained on the corresponding singly doped compositions; alumina-500 ppm La, and alumina-500 ppm Hf. The results showed that singly doping with La did not have any benefit compared to undoped alumina, whereas singly doping with Hf resulted in a slowing of transport by a factor of ~7. The behavior of the codoped sample was very similar to that of the singly doped Hf composition. For all the studied compositions, atomic scale characterization using high-angle annular dark-field scanning transmission electron microscopy and atom probe tomography (APT) revealed strong segregation of the dopant ions to the alumina grain boundaries. In the codoped sample, APT revealed evidence of oxygen excess and aluminum depletion at the GB core.  相似文献   

20.
The effect of an external electric field on the grain-boundary migration in Al2O3 ceramics has been investigated. The boundary migration is dependent on the direction and magnitude of the applied bias, and the observed boundary migration behavior is attributed to the presence of an electrostatic potential that inherently forms at the grain boundaries of Al2O3 ceramics. The results give experimental evidence that the boundary phenomena in oxide ceramics are related to the grain-boundary potential.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号