首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.
Beyond the shelf break at ca. 150 m water depth, sulfate reduction is the only important process of organic matter oxidation in Black Sea sediments from the surface down to the sulfate–methane transition at 2–4 m depth. Sulfate reduction rates were measured experimentally with 35SO42−, and the rates were compared with results of two diffusion-reaction models. The results showed that, even in these non-bioirrigated sediments without sulfide reoxidation, modeling strongly underestimated the high reduction rates near the sediment surface. A hybrid modeling approach, in which experimentally measured rates in the upper sediment layers force a model that includes also the deeper layers, probably provides the most realistic estimate of sulfate reduction rates. Areal rates of sulfate reduction were 0.65–1.43 mmol SO42− m−2 d−1, highest in sediments just below the chemocline. Anaerobic methane oxidation accounted for 7–11% of the total sulfate reduction in slope and deep-sea sediments. Although this methane-driven sulfate reduction shaped the entire sulfate gradient, it was only equivalent to the sulfate reduction in the uppermost 1.5 cm of surface sediment. Methane oxidation was complete, yet the process was very sluggish with turnover times of methane within the sulfate–methane transition zone of 20 yr or more.  相似文献   

2.
在富含甲烷水合物的海相冷泉沉积物中, 古菌厌氧甲烷氧化作用(anaerobic oxidation of methane, AOM)越来越受到人们的重视。目前普遍认为, AOM是由嗜甲烷古菌和硫酸盐还原菌共同调节的生物地球化学过程。16S rRNA基因分析表明, 包括AEME-1、AEME-2和AEME-3在内的多种甲烷古菌参与了AOM的过程, 它们广泛分布于全球大洋海底缺氧带。AOM过程与全球环境变化密切相关, 从深海底部冷泉区向上渗漏的甲烷气体, 绝大部分在穿透缺氧带沉积层过程中被甲烷氧化古菌所消耗, 有效减少了具有强烈温室效应的甲烷气体向大气的释放。对AOM生物地球化学过程的研究, 在认识冷泉系统碳酸盐的形成机理、控制强温室气体甲烷从海底的渗漏和开发可燃冰新能源等方面具有重要意义。  相似文献   

3.
通过沉积物柱孔隙水中甲烷,SO2-4,Cl-,δc(34S-SO2-4)、δc(13 C-CH4)的垂直分布特征,研究了硫酸盐还原和甲烷厌氧氧化(anaerobic oxidation of methane,简称AOM)过程在九龙江河口沉积物中的分布规律.测定结果显示两个站位(J-A和J-E)间隙水中SO2-4浓度随深...  相似文献   

4.
南海东沙东北部碳酸盐岩和泥质沉积物中的生物标志化合物组合及其碳同位素组成分析表明,研究区内甲烷缺氧氧化作用(anaerobic oxidation of methane-AOM)发育.研究区内碳酸盐岩中含丰富的AOM标志化合物,2,6,11,15-四甲基十六烷(Crocetane-Cr.)、2,6,10,15,19-五甲基番茄烷(Pentamethylicosane-PMI)和2,6,10,15,19,23-六甲基二十四烷(Squalane-Sq角鲨烷)的13C亏损强烈(δ13C值介于-74.2‰~-119.0‰PDB之间),表明碳酸盐岩形成于AOM,同时反映该研究区曾发生过强烈、持续的富CH4流体释放活动.柱状泥质沉积物中,AOM生物标志化合物在硫酸岩-甲烷过渡带(SMI-Sulfate-Methane Interface)边界附近相对丰度高,SMI之上样品中含量低,或未检出,表明现代环境在SMI附近有大量嗜甲烷微生物生长,使得深部上升的甲烷被大量消耗,很少有甲烷逸出海底.AOM生物标志化合物可用来指示SMI边界.不同站位、不同岩性AOM生物标志化合物组成(包括碳同位素组成)的差异反映了嗜甲烷古细菌组成的不同.  相似文献   

5.
海洋沉积物中大部分甲烷会通过甲烷厌氧氧化作用(anaerobic oxidation of methane, AOM)而被消耗。早期研究表明,AOM可与硫酸盐、硝酸盐和亚硝酸盐的还原作用相耦合,从而有效减少甲烷向大气的排放。最近,金属依赖型AOM(metal-AOM,活性金属氧化物还原反应驱动的AOM)被证实存在于自然界沉积物和富集培养的样品中。但是,目前仍未从自然海洋环境中分离获得能够介导metal-AOM的微生物。对海洋沉积物中metal-AOM的研究大多聚焦于热液或冷泉等海洋特殊生境,一系列研究表明地质流体在这些海底化能自养生态系统的维持和演化方面起到了重要作用,并深刻影响全球地球化学循环,因此,该科学问题研究吸引了越来越多的注意力。本文讨论了可能参与海洋沉积物中metal-AOM的微生物类群及其地球化学证据,并在前人工作基础上,以冲绳海槽冷泉-热液共生区为例,提出一种新的metal-AOM作用机制。认为在全球冷泉-热液系统相互作用地区的调查有助于更好地探讨metal-AOM的发生机制及微生物在深海生境中分布的连通性问题。  相似文献   

6.
As a contribution to the EC-OMEX-II program, sediment carbon and nitrogen budgets are presented for the Iberian Margin (northeastern Atlantic). The budgets for degradable organic carbon and associated nitrogen were calculated from sediment and pore water properties, using a steady-state version of a numerical coupled diagenetic model, OMEXDIA. Data were collected throughout the major upwelling period along five transects, four of which were located on the open margin and one positioned in a major submarine canyon, the Nazaré Canyon.A comparison of in situ oxygen profiles measured with monocathodic microelectrodes and with Clark type microelectrodes showed that monocathodic electrodes overestimate the oxygen concentration gradient near the sediment–water interface. This artifact probably results from the loss in sensitivity of the monocathodic microelectrode during profiling. Shipboard time course measurements with Clark type electrodes demonstrated transient conditions upon sediment retrieval on deck and indicated enhanced rates of oxygen consumption in the surface sediment, presumably as a result of lysis or exudation of oxidisable substrates by infauna. As a result, oxygen fluxes calculated from shipboard oxygen profiles overestimated in situ fluxes by up to a factor of 5 for water depths >1000 m.The sediments from the canyon and from a depositional area on the shelf were enriched in organic carbon (3–4.5 wt%) relative to the open margin stations (0.5–2 wt%) and showed C/N ratios exceeding Redfield stoichiometry for marine organic matter, indicating there was deposition of organic carbon of terrestrial origin in these areas. The oxidation of organic carbon on the open margin declined from ˜11 gCm−2y−1 on the shelf to 2 gCm−2y−1 at 5000 m water depth, and was dominated by aerobic oxidation. The reactivity of the degradable organic carbon at the time of deposition was <2.5 y−1 on the shelf, and declined to <0.5 y−1 offshore. The burial of refractory organic carbon at the stations along the open margin transects also declined with increasing water depth from ˜5 gCm−2y−1 on the shelf to <1 gCm−2y−1 at 2000 m depth, whereas the burial of particulate inorganic carbon declined from ˜20 gCm−2y−1 to <5 gCm−2y−1. A comparison of the estimated total organic carbon deposition and predicted delivery for the shelf suggest that 58 to 165 gCm−2y−1 is oxidized in the water column, laterally advected, or focused into one of the canyons.Anaerobic oxidation, denitrification and, therefore, total oxidation of organic carbon was enhanced within the canyon relative to the open margin. Total organic carbon oxidation decreased with water depth from 22 gCm−2y−1 at the head of the canyon to 3 gCm−2y−1 over its fan. The reactivity of the organic carbon deposited in the canyon was lower than those of the shelf stations, suggesting that the canyon is being enriched in older, laterally advected organic matter. The burial of refractory organic carbon in sediments from the Nazaré Canyon was considerably higher than in the sediments from the open margin; it also decreased with depth from 20 gCm−2y−1 at 343 m to ˜2.5 gCm−2y−1 at 4298 m water depth. The burial of particulate inorganic carbon was slightly lower than that of refractory organic carbon.The burial of refractory organic carbon and the deposition of degradable organic carbon were both positively correlated with the sedimentation rates for the Iberian Margin, and indicated burial efficiencies were 0.6 to 48%. A single trend for burial efficiency versus sedimentation rate for both the canyon and the open margin indicates that the sedimentation rate was the master variable for the geographical distribution of organic carbon oxidation and carbon preservation on the NW Iberian Margin.  相似文献   

7.
The activities of methane-producing and sulphate-reducing bacteria in intertidal sediments along the Brittany coast of France were examined in order to determine the effect of the Amoco Cadiz oil spill on sediment microbial processes. Porewater chemistry, methane production, sulphate rate and [2?14C]-acetate metabolism did not vary significantly between beach, estuary, and marsh sites, oiled or unoiled, after the Amoco Cadiz spill. Oiled sediments contained highly weathered oil of Amoco Cadiz origin, but unoiled comparison sites also contained hydrocarbons from anthropogenic sources. The additions of weathered Amoco Cadiz mousse, fresh and slightly weathered light Arabian crude oil, benzene or toluene to sediments from the oiled and unoiled marsh site did not significantly affect rates of sulphate reduction or methane production. The oxidation of [2?14C]-acetate to 14CO2, however, was significantly decreased when mousse, crude oil, benzene or toluene was added to sediments from the unoiled site. Inhibition seemed to be proportional to the extent of weathering. Sediments recently exposed to Amoco Cadiz crude oil were less affected by a second oiling, suggesting that the indigenous populations may have been replaced by organisms more resistant to oil toxicity. These results suggested that the Amoco Cadiz oil spill did not have major long-term effects on sulphate reduction or methane production.  相似文献   

8.
The products of 35S-sulphate reduction by sedimentary bacteria were measured at two sites in a salt marsh on the east coast of England. Non-acid-volatile products were measured, after acid-volatile sulphide was removed, by their reduction to sulphide by digestion with tin. The proportion of the sulphate reduced to tin-reducible products varied between 25% in a salt marsh pan and 61% in creek sediment, over a 0–25 cm depth profile. There were also variations with depth at each site in the proportions of sulphate reduced to tin-reducible products. Further examination revealed differences in the proportions of sulphate which were reduced to free sulphide, acid-volatile sulphide, sulphur or pyrite at the two sites. The data suggest that previous work which did not measure non-acid-volatile products underestimated sulphate reduction rates by three-fold in the creek site, but by only one third in the pan.  相似文献   

9.
酸洗法测定海洋沉积物有机碳和无机碳含量的致命缺陷   总被引:2,自引:0,他引:2  
Organic and inorganic carbon contents of marine sediments are important to reconstruct marine productivity,global carbon cycle, and climate change. A proper method to separate and determine organic and inorganic carbons is thus of great necessity. Although the best method is still disputable, the acid leaching method is widely used in many laboratories because of its ease-of-use and high accuracy. The results of the elemental analysis of sediment trap samples reveal that organic and inorganic carbon contents cannot be obtained using the acid leaching method, causing an infinitely amplified error when the carbon content of the decarbonated sample is 12%±1% according to a mathematical derivation. Acid fumigation and gasometric methods are used for comparison, which indicates that other methods can avoid this problem in organic carbon analysis. For the first time, this study uncovers the pitfalls of the acid leaching method, which limits the implication in practical laboratory measurement, and recommends alternative solutions of organic/inorganic carbon determination in marine sediments.  相似文献   

10.
Diatom and nannoplankton microfossils in the samples of the surface bottom sediments and cores from the western part of the Norwegian Sea (64°–79°N) were studied. The abundance, distribution, taxonomic composition, and structure of the assemblages are determined by the productivity and temperature of the surface waters, by the distance from the shore, by the hydrological setting, and by the intensity of the supply of the Atlantic (from the south) and Arctic (from the north) waters to the Norwegian Sea. The repeated changes in the ecological structure of the diatom assemblages with time allowed us to distinguish five different ages and to estimate the changes in the paleoenvironment in the region under study during the past ~19–21 ky. The nannofossil distribution is not universal over the entire area studied owing to the extreme northern location of the stations and low water temperatures. All the sediments examined refer to the Emiliania huxleyi zone of the Late Pleistocene-Holocene; in selected cases, narrower temperate and cold-water intervals were also recognized. The low species diversity and the poor preservation of nannofossils prove the dominating influence of the Arctic water masses.  相似文献   

11.
Cold-seep environments and their associated symbiont-bearing megafaunal communities create islands of primary production for macro- and meiofauna in the otherwise monotonous and nutrient-poor deep-sea environment. To examine the spatial variation and distribution patterns of metazoan meiobenthos in different seepage-related habitats, samples were collected in two regions off Norway: several pockmarks associated with the Storegga Slide including the Nyegga pockmark area (730 m; 64°N), and the active, methane-venting Håkon Mosby Mud Volcano (HMMV) west of the Barents Sea (1280 m; 72°N). Based on sediment geochemistry and associated epifauna, three different habitat types were distinguished across the two regions: (1) reduced sediment with suboxic conditions, sometimes covered by bacterial mats, (2) sediment colonised by chemosynthetic, siboglinid tubeworms, and (3) sediment outside the influence of seepage and without a large chemosynthetic fauna. Meiofaunal communities varied strongly in terms of generic diversity and dominance among the different habitat types. Control sites and Siboglinidae polychaete fields both supported high nematode genus richness similar to normal deep-sea sediments, whereas the reduced sediments yielded a genus-poor nematode community dominated by one or two successful species. Meiofaunal densities in the different habitats were negatively correlated with macrobenthic densities. An extremely dense (>11,000 ind. 10 cm–2), mono-specific nematode population appeared to be restricted to the bacterial mats at HMMV. It consisted of a new cryptic species of the Halomonhystera disjuncta complex, which has been described from intertidal habitats in the North Sea. The reduced seep sediments at Nyegga did not yield H. disjuncta but were dominated by Terschellingia longicaudata, another cosmopolitan nematode species known to be abundant in organic-rich, oxygen-poor, shallow-water environments. These observations point to a past or recent connection between margins and shallow-water habitats.  相似文献   

12.
《Marine Chemistry》2005,93(2-4):159-177
Sediment core samples were collected from two sites in the lower Mississippi River, an oxic shelf site and a hypoxic shelf site (in September 1998 and July 1999), and from a cross-shelf transect (in April 2000), to examine the differential effects of redox and sedimentation rate on carbon decay dynamics in a river-dominated margin. Downcore distribution of pigments, bulk organic carbon and nitrogen, and radioactive isotopes (210Pb, 7Be) were used to evaluate the decomposition and preservation of pigments and bulk organic carbon. The distinctly different sedimentary regimes and dynamic nature of the LA shelf limit the application of diagenetic models. Sedimentation processes in the lower Mississippi River and oxic shelf sites were significantly impacted by the river discharge. In areas with low sedimentation, the depth of the surface mixed layer fluctuated with seasonal variation of weather forcing. It was observed that pigment decay rate constants in the mixed layer (7.52 year−1 for chlorophyll-a) were greater than those in the accumulation layer (0.14–0.22 year−1 for chlorophyll-a) by 1–2 orders of magnitude. This suggests that enhanced decomposition of reactive organic carbon occurred in the mixed layer at locations with low sedimentation rates—due to higher decay rates. Conversely, at locations with high sedimentation rates (>10 cm year−1), the reactive carbon pool was rapidly buried below the mixed layer. The surface mixed layer likely worked as a biogeochemical reactor receiving high inputs of phytodetritus, supported by an active microbial community. We propose that despite the frequency of occurrence of bottom water hypoxia on the Louisiana shelf, sedimentation rate and lability of organic matter are more important in controlling the preservation of organic carbon.  相似文献   

13.
Cold seeps on the Hikurangi Margin off New Zealand exhibit various seabed morphologies producing different intensity patterns in sidescan backscatter images. Acoustic backscatter characteristics of 25 investigated seep sites fall into four distinct types characterised by variations in backscatter intensity, distribution and inferred structural heights. The types reflect different carbonate morphologies including up to 20-m-high structures (type 1), low-relief crusts (type 2), scattered blocks (type 3) and carbonate-free sites (type 4). Each seep corresponds to a single type; intermediates were not observed. This correlates well with published data on seep fauna at each site, with the four types representing three different faunal habitats of successive stages of seep development. Backscatter signatures in sidescan sonar images of cold seeps may therefore serve as a convenient proxy for variations in faunal habitats.  相似文献   

14.
Cold seeps have recently been discovered in the Nile deep‐sea fan (Eastern Mediterranean), and data regarding associated fauna are still scarce. In this study, two bivalve species associated with carbonate crusts and reduced sediment are identified based on sequence analysis of their 18S and 28S rRNA‐encoding genes, and associated bacterial symbioses are investigated using 16S rRNA gene sequencing and microscopy‐based approaches. The specimens are closely related to Myrtea spinifera and Thyasira flexuosa, two species previously documented at various depths from other regions but not yet reported from the Eastern Mediterranean. Both species harbour abundant gammaproteobacterial endosymbionts in specialized gill epithelial cells. The Myrtea‐associated bacterium is closely related to lucinid symbionts from both deep‐sea and coastal species, whereas the Thyasira‐associated bacterium is closely related to the symbiont of a T. flexuosa from coastal waters off the U.K. An epsilonproteobacterial sequence has also been identified in Thyasira which could correspond to a helicoid‐shaped morphotype observed by electron microscopy, but this was not confirmed using fluorescent in situ hybridization. Virus‐like particles were observed within some symbionts in Thyasira, mostly in bacteriocytes localized close to the ciliated zone of the gill filament. Overall, results indicate that very close relatives of shallow species M. spinifera and T. flexuosa occur at cold seeps in the Eastern Mediterranean and harbour chemoautotrophic symbioses similar to those found in their coastal relatives.  相似文献   

15.
A series of molecular organic markers were determined in surface sediments from the Gulf of Genoa (Ligurian Sea) in order to evaluate their potential for palaeo-environmental reconstructions. Allochthonous input can be characterized by the distributions of n-C29 and n-C31 alkanes, n-C26 and n-C28 alkanols and branched glycerol dialkyl glycerol tetraethers (GDGTs), whose concentrations are generally highest near the river mouths. In the open basin however, terrestrial n-alkanes and n-alkanols may have an additional, eolian source. Autochthonous input is represented by crenarchaeol and isoprenoid GDGTs. Their concentrations are highest in the open basin showing the preference of Thaumarchaeota for oligotrophic waters. Indications of a significant degradation of sterols and C37 alkenones exclude these lipids as reliable productivity proxies. Using terrestrial and aquatic lipids as end-members allows estimating the percentage of terrestrial organic matter between 20% and 58% in the coastal area decreasing to 1–30% in the deep basin. The spatial distribution of sea surface temperature (SST) estimates using the alkenone-based UK′37 index is very similar to the autumnal (November) mean satellite-based SST distribution. Conversely, TEXH86-derived SST estimates are close to winter SSTs in the coastal area and summer SSTs in the open basin. This pattern reflects presumably a shift in the main production of Thaumarchaeota from the coastal area in winter to the open basin in summer. This study represents a major prerequisite for the future application of lipid biomarkers on sediment cores from the Gulf of Genoa.  相似文献   

16.
Bathynerita naticoidea (Gastropoda: Neritidae) and Methanoaricia dendrobranchiata (Polychaeta: Orbiniidae) are two of the most abundant invertebrates associated with cold‐seep mussel beds in the Gulf of Mexico. At the methane seep known as Brine Pool NR‐1 (27 °43.415 N, 91 °16.756 W; 650 m depth), which is surrounded by a broad band of mussels (Bathymodiolus childressi), these species have distinctly different patterns of abundance, with the gastropod being found mostly at the outer edge of the mussel bed (average density in November 2003: 817 individuals·m−2 in outer zone, 20·m−2 in inner zone) and the polychaete being found almost exclusively near the inner edge (average density in November 2003: 3155 individuals·m−2 in inner zone, 0·m−2 in outer zone), adjacent to the brine pool itself. The salinity of the brine pool exceeds 120, so we hypothesized that M. dendrobranchiata should be more tolerant of high salinities than B. naticoidea. The opposite proved to be true. The gastropods were capable of withstanding salinities at least as high as 85, whereas the polychaetes died at salinities higher than 75. Both species were osmoconformers over the range of salinities (35–75) tested. Behavioral responses of B. naticoidea to salinities of 50, 60, and 70 were investigated in inverted vertical haloclines. Gastropods generally did not enter water of salinity greater than 60, but tolerated short periods at 60. Behavioral avoidance of brine should limit the vertical distribution of B. naticoidea in the inner zone to the top 2.5–5 cm of the mussel bed. Behavior is also a likely (though unproven) mechanism for controlling horizontal distribution of this species across the mussel bed. Methanoaricia dendrobranchiata can tolerate short excursions into the brine, but probably avoids hypersaline conditions by aggregating on the tops of the mussels.  相似文献   

17.
Side-scan sonar mapping and ground-truthing of the Norwegian–Barents–Svalbard continental margin shed new light on shelf glaciation, mass wasting, hydrates, and features like the Håkon Mosby mud volcano (HMMV), reflecting upward mobility of gas, pore fluids, and sediments. Detailed HMMV examination revealed thermal gradients to 10°/m, bottom-water CH4 and temperature anomalies, H2S- and CH4-based chemosynthetic ecosystems, and subbottom methane hydrate (to 25%). Seismic and chemical data suggest HMMV origins at 2–3?km depth within the 6-km-thick depocenter. The HMMV and mound fields bordering the Bjørnøyrenna slide valley and pockmarks bordering the Storegga slide may all have formed in response to sediment failure.  相似文献   

18.
Elemental (TOC, TN, C/N) and stable carbon isotopic (δ13C) compositions and n-alkane (nC16–38) concentrations were measured for Spartina alterniflora, a C4 marsh grass, Typha latifolia, a C3 marsh grass, and three sediment cores collected from middle and upper estuarine sites from the Plum Island salt marshes. Our results indicated that the organic matter preserved in the sediments was highly affected by the marsh plants that dominated the sampling sites. δ13C values of organic matter preserved in the upper fresh water site sediment were more negative (−23.0±0.3‰) as affected by the C3 plants than the values of organic matter preserved in the sediments of middle (−18.9±0.8‰) and mud flat sites (−19.4±0.1‰) as influenced mainly by the C4 marsh plants. The distribution of n-alkanes measured in all sediments showed similar patterns as those determined in the marsh grasses S. alterniflora and T. latifolia, and nC21 to nC33 long-chain n-alkanes were the major compounds determined in all sediment samples. The strong odd-to-even carbon numbered n-alkane predominance was found in all three sediments and nC29 was the most abundant homologue in all samples measured. Both δ13C compositions of organic matter and n-alkane distributions in these sediments indicate that the marsh plants could contribute significant amount of organic matter preserved in Plum Island salt marsh sediments. This suggests that salt marshes play an important role in the cycling of nutrients and organic carbon in the estuary and adjacent coastal waters.  相似文献   

19.
Tubeworms within the annelid family Siboglinidae rely on sulfur-oxidizing autotrophic bacterial symbionts for their nutrition, and are among the dominant metazoans occurring at deep-sea hydrocarbon seeps. Contrary to their relatives from hydrothermal vents, sulfide uptake for symbionts occurs within the anoxic subsurface sediment, in the posterior ‘root’ region of the animal. This study reports on an integrated microbiological and geochemical investigation of the cold seep tubeworm Escarpia southwardae collected at the Regab pockmark (Gulf of Guinea). Our aim was to further constrain the links between the animal and its symbiotic bacteria, and their environment. We show that E. southwardae harbors abundant sulfur-oxidizing bacterial symbionts in its trophosome. Symbionts are able to fix inorganic carbon using the Calvin-Benson cycle, as reported in most other Siboglinidae, but can also use the reverse Tricarboxilic Acid Cycle. Surprisingly, the observed bacteria appear to be more closely related to symbionts of Escarpia and Lamellibrachia species from very distant sites located in the Gulf of Mexico and eastern Pacific, than to symbionts of a siboglinid occurring at a nearby methane seep site, only a few hundred km away from Regab. Then, by combining scanning electron microscopy and trace element (Mn, Fe, Sr, Zr) analyses of E. southwardae tube, we also show that two distinct oxidation fronts occur along the tube. The first one, near the posterior end of the tube, corresponds to the interface between oxic bottom waters and the underlying anoxic sediment. In contrast, the second redox front is located in the most anterior part of the tube, and could result from active oxygen uptake by the plume of the tubeworm. We speculate that intense oxygen consumption in this region could create favorable conditions for sulfate reduction by specialized bacteria associated with the plume, possibly leading to an additional source of dissolved sulfide that would further enhance the productivity of bacterial symbionts.  相似文献   

20.
Natural marine gas hydrate was discovered in Korean territorial waters during a 2007 KIGAM cruise to the central/southwestern Ulleung Basin, East Sea. The first data on the geochemical characterization of hydrate-bound water and gas are presented here for cold seep site 07GHP-10 in the central basin sector, together with analogous data for four sites (07GHP-01, 07GHP-02, 07GHP-03, and 07GHP-14) where no hydrates were detected in other cores from the central/southwestern sectors. Hydrate-bound water displayed very low concentrations of major ions (Cl, SO42−, Na+, Mg2+, K+, and Ca2+), and more positive δD (15.5‰) and δ18O (2.3‰) signatures compared to seawater. Cl freshening and more positive isotopic values were also observed in the pore water at gas hydrate site 07GHP-10. The inferred sulfate–methane interface (SMI) was very shallow (<5 mbsf) at least at four sites, suggesting the widespread occurrence of anaerobic oxidation of methane (AOM) at shallow sediment depths, and possibly high methane flux. Around the SMI, pore water alkalinity was very high (>40 mM), but the carbon isotopic ratios of dissolved inorganic carbon (δ13CDIC) did not show minimum values typical of AOM. Moreover, macroscopic authigenic carbonates were not observed at any of the core sites. This can plausibly be explained by carbon with high δ13C values diffusing upward from below the SMI, increasing alkalinity via deep methanogenesis and eventually escaping as alkalinity into the water column, with minor precipitation as solid phase. This contrasts, but is not inconsistent with recent reports of methane-fuelled carbonate formation at other sites in the southwestern basin sector. Methane was the main hydrocarbon component (>99.85%) of headspace, void, and hydrate-bound gases, C1/C2+ ratios were at least 1,000, and δ13CCH4 and δDCH4 values were in the typical range of methane generated by microbial reduction of CO2. This is supported by the δ13CC2H6 signatures of void and hydrate-bound gases, and helps clarify some contradictory interpretations existing for the Ulleung Basin as a whole. In combination, these findings suggest that deep biogenic gas and pore waters migrate upward through pathways such as hydrofractures, and measurably influence the shallow carbon cycle. As a result, cation-adjusted alkalinity/removed sulfate diagrams cannot always serve to estimate the degree of alkalinity produced by sulfate reduction and AOM in high methane flux areas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号