首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Liuyuan mafic and ultramafic rocks are exposed in Southern Beishan, which is along the southern branch of the Central Asian Orogenic Belt (CAOB). Zircon SHRIMP U–Pb dating showed that Liuyuan gabbros intruded during the early Permian (~ 270–295 Ma) coeval with the basalts and the ultramafic rocks were emplaced at about 250 Ma. The basalts are within–plate tholeiites with slight enrichment in light rare earth elements (LREE) relative to heavy rare earths (HREE) and small negative anomalies of Nb and Ta. Gabbros including olivine gabbros, olivine gabbronorites and troctolites are grouped into two: the cumulate gabbros are depleted in LREE and show small negative Nb and Ta anomalies but distinct positive Sr and Eu anomalies; non–cumulate gabbros resemble tholeiitic basalts. Lamprophyres and cumulate ultramafic rocks are characterized by large enrichment of LREE relative to HREE with depletion in Nb and Ta. The enriched Sr–Nd isotopic trend from DM towards the EM II end member component implies that the lithospheric mantle was progressively enriched with depth by the involvement of subducted crustal material due to the delamination of thickened mantle lithosphere after collision. The digestion of subducted crustal material into the mantle resulting in the metasomatized and enriched mantle is inferred to be an important process during crust–mantle interaction.  相似文献   

2.
The Naga Ophiolite Belt is a part of the Naga-Arakan-Yoma flysch trough that occurs along the Indo-Myanmar border. It is represented by peridotites, mafic-ultramafic cumulates, mafic volcanics, mafic dykes, plagiogranites, pelagic sediments and minor felsic to intermediate intrusives. Minor plagiogranites, gabbros and thin serpentinite bands occur juxtaposed near Luthur, with the slate-phyllite-metagreywacke sequence (Phokpur Formation) adjacent to the contact. The development of tonalites, trondhjemites and diorites in the oceanic crust, which is grouped as plagiogranites, offers an opportunity to study the process of formation of silicic melts from mafic crust. Plagiogranites from Naga Ophiolite Belt contains moderate SiO2 (51.81–56.71 wt.%), low K2O (0.08–1.65 wt.%) and high Na2O (4.3–5.03 wt.%). The Naga Ophiolite Belt plagiogranites like ocean-ridge granites contain low K2O, high Na2O and CaO. The rocks investigated from Naga Ophiolite Belt contain TiO2 concentrations above the lower limit for fractionated Mid Oceanic Ridge Basalt which is above 1 wt% of TiO2 and the ternary plots of A (Na2O + K2O) F(FeOT) M(MgO) and TiO2-K2O-SiO2/50 indicate that the plagiogranite are tholeiitic in character and gabbro samples are calc-alkaline in nature. The plagiogranites are enriched in Rb, Ba, Th, U, Nb and Sm against chondrite with negative anomalies on Sr and Zr whereas Y and Yb are depleted to Mid Oceanic Ridge Basalt. The chondrite normalized REE patterns of the plagiogranite display enrichments in LREE (LaN/SmN: 2.37–3.62) and flat HREE (Eu/Eu*: 0.90–1.06). The Mid Oceanic Ridge Basalt normalization of gabbro is characterized by strong enrichment of LILE like Ba and Th. The REE pattern is about 50–100 times chondrite with slight enrichment of LREE (LaN/SmN = 2.21–3.13) and flat HREE (Eu/Eu*: 0.94–1.19). The major-element and trace element data of the NOB plagiogranites and their intrusive nature with host gabbroic rock suggest that the plagiogranites were produced by fractional crystallization of basaltic parental magmas at Mid Oceanic Ridge.  相似文献   

3.
Fifteen zircons separated from a mafic dyke in the Chinese Altai give a concordant age population with a weighted mean 206Pb/238U age of 375.5 ± 4.8 Ma, suggesting a Devonian emplacement. On the basis of their mineralogical compositions and textures, the coeval dykes can be divided into gabbroic and doleritic types. They are both sub-alkaline, tholeiitic, characterized by similarly low SiO2 contents (45.2–52.7 wt.%) and total alkaline (K2O + Na2O = 0.99–4.93 wt.%). Rare earth element patterns of the gabbroic dykes are similar to N-MORB (La/YbN = 0.86–1.1), together with their high εNd(t) values (+ 7.6 to + 8.1), indicating that their precursor magma was mainly derived from a N-MORB-type depleted asthenospheric mantle. While the REE patterns of the doleritic dykes resemble that of E-MORB (La/YbN = 1.12–2.28), enriched in LILEs and strongly depleted in HFSEs, with relative low εNd(t) values (+ 3.4 to + 5.4) and high initial 87Sr/86Sr ratios (0.7057–0.7060). The zircon Hf isotopic analysis of the doleritic dykes give εHf(t) values from + 10.7 to + 13.8. These signatures suggest that a depleted mantle wedge metasomatized by slab-derived fluids and/or melts was possibly involved in the generation of the doleritic magma. The refractory peridotite may have been melted with variable degrees caused by upwelling of the hot asthenosphere. The petrogenesis of the mafic dykes suggest a high heat flux as a result of upwelling of the hot asthenosphere and the contrast geochemical signatures can be interpreted by a ridge subduction, which could be an important tectonic control in the accretionary process of the Chinese Altai.  相似文献   

4.
Tectonics of the ophiolite belt from Naga Hills and Andaman Islands,India   总被引:1,自引:0,他引:1  
The ophiolitic rocks of Naga Hills-Andaman belt occur as rootless slices, gently dipping over the Paleogene flyschoid sediments, the presence of blue-schists in ophiolite melange indicates an involvement of the subduction process. Subduction was initiated prior to mid-Eocene as proved by the contemporaneous lower age limit of ophiolite-derived cover sediment as against the accreted ophiolites and olistostromal trench sediment. During the late Oligocene terminal collision between the Indian and Sino-Burmese blocks, basement slivers from the Sino-Burmese block, accreted ophiolites and trench sediments from the subduction zone were thrust westward as nappe and emplaced over the down-going Indian plate. The geometry of the ophiolites and the presence of a narrow negative gravity anomaly flanking their map extent, run counter to the conventional view that the Naga-Andaman belt marks the location of the suture. The root-zone of the ophiolite nappe representing the suture is marked by a partially-exposed eastern ophiolite belt of the same age and gravity-high zone, passing through central Burma-Sumatra-Java. The ophiolites of the Andaman and Naga Hills are also conventionally linked with the subduction activity, west of Andaman islands. This activity began only in late Miocene, much later than onland emplacement of the ophiolites; it further developed west of the suture in its southern part. Post-collisional northward movement of the Indian plate subparallel to the suture, also developed leaky dextral transcurrent faults close to the suture and caused Neogene-Quatemary volcanism in central Burma and elsewhere.  相似文献   

5.
K. Vijaya Kumar  K. Rathna 《Lithos》2008,104(1-4):306-326
Mesoproterozoic rift-zone magmatism in the Prakasam Alkaline Province of Eastern Ghats Belt, India is represented by three geochemically distinct primary mafic magmas and their plutonic differentiates. The three mafic magmas correspond to the alkali basaltic dykes, gabbroic dykes and lamprophyric dykes. The dyke activity is synchronous with the host plutons and belongs to the 1350–1250 Ma period Mesoproterozoic magmatism. Geochemical signatures suggest that the alkali basaltic dykes have a source in the thermal boundary layer, which has a history of prior melt extraction followed by enrichment. Both the gabbroic and lamprophyric dykes are derived from lithospheric sources and their geochemical variation can be explained by “vein-plus-wall-rock melting model”. Vein/wall-rock ratio is low for the sources of gabbroic dykes, whereas it is high for the lamprophyric dykes. Geochemistry of the gabbro dykes further indicates preservation of previous arc-signals by the lithosphere beneath the Prakasam Alkaline Province during the Mesoproterozoic. Geochemical signatures of lamproite, which could be a cratonic expression of the rift-triggered magmatism in the Prakasam Province, suggest a general increase in the metasomatic imprint with increasing lithosphere thickness from cratonic margin towards interior. It is found that geochemistry of continental rift-zone magmatism of the Prakasam rift is remarkably similar to that of the Gardar rift of South Greenland. It appears that the geodynamic conditions under which melting occurred in the Prakasam Alkaline Province are similar to that of a propagating rift with variable contributions from the convective mantle and subcontinental lithosphere mantle to the rift-zone magmas. The present study illustrates how fertility and chemical heterogeneity of the lithosphere play significant roles in the creation of enormous geochemical diversity characteristic of continental rift-zone magmatism.  相似文献   

6.
This study presents new geochemical data on rocks from the Vespor suite, an important mafic unit from the Juruena arc, Roosevelt-Juruena terrain, SW Amazonian craton, northwest Mato Grosso, Brazil, attempting to define their tectonic setting and type of mantle source. The Juruena arc may be part of a magmatic belt (Jamari and Juruena arcs) at the southwestern Amazonian craton during assembly of the Columbia supercontinent. The investigated rocks represent a Paleoproterozoic subduction-related mafic suite of sigmoidal bodies, composed mainly of gabbro, norite, gabbronorite and diorite, that underwent amphibolite facies metamorphism. Here we present also preliminary petrology aspects and zircon U–Pb geochronology. Geochemical character and variation trends of major and trace elements as well as selected trace element ratios suggest that Vespor suite rocks have a tholeiitic lineage of arc affinity controlled by fractional crystallization with a prominent iron enrichment trend. Gabbros, norites and gabbronorites are characterized by enrichment of LILE and weakly to moderately differentiated HFSE patterns, suggesting their deviation from an enriched heterogeneous lithospheric mantle source. Vespor suite rocks are characterized by depletion of Nb–Ta, P and Ti, with flat distribution of HFSE, markedly large variations in most of the LILE, positive anomalies displayed by Ba, K, Th, Sr, Pb and weak negative anomalies of Hf–Zr. These features reflect limited degrees of crustal contamination associated with a subduction-related magma process where the mantle wedge was chemically modified. In addition, the enrichment in LILE and Pb, low values of the ratios (Lan/Smn – 0.83 to 4.58) and (Nbn/Lan – 0.04 to 0.45), but high Th/Yb ratios, gently to moderately sloping REE profiles (La/Ybn = 2.53–7.37), negative anomalies in HFSE (Ta, Zr, Hf, and Ti), and positive anomalies in LILE (Th, Ba, Sr), suggest derivation from a metasomatized lithospheric mantle source above a subduction zone with weak crustal contamination. Both the composition of the mantle source and the degree of partial melting that produced the parental magmas of these rocks, determined by using REE abundance and ratios, indicate that gabbroic/dioritic melts were generated at different degrees of melting of the source: about 5–20% partial melting of a garnet-spinel lherzolite, around 1–10% partial melting of spinel lherzolite source, and approximately 1–5% partial melting of intermediate source composition, and crystallizing between 1.773 and 1.764 Ma.  相似文献   

7.
《地学前缘(英文版)》2020,11(6):2347-2364
The Late Cretaceous Sabzevar ophiolite represents one of the largest and most complete fragments of Tethyan oceanic lithosphere in the NE Iran. It is mainly composed of serpentinized mantle peridotites slices; nonetheless, minor tectonic slices of all crustal sequence constituents are observed in this ophiolite. The crustal sequence contains a well-developed ultramafic and mafic cumulates section, comprising plagioclase-bearing wehrlite, olivine clinopyroxenite, olivine gabbronorite, gabbronorite, amphibole gabbronorite and quartz gabbronorite with adcumulate, mesocumulate, heteradcumulate and orthocumulate textures. The crystallization order for these rocks is olivine ​± ​chromian spinel → clinopyroxene → plagioclase → orthopyroxene → amphibole. The presence of primary magmatic amphiboles in the cumulate rocks shows that the parent magma evolved under hydrous conditions. Geochemically, the studied rock units are characterized by low TiO2 (0.18–0.57 ​wt.%), P2O5 (<0.05 ​wt.%), K2O (0.01–0.51 ​wt.%) and total alkali contents (0.12–3.04 ​wt.%). They indicate fractionated trends in the chondrite-normalized rare earth element (REE) plots and multi-element diagrams (spider diagrams). The general trend of the spider diagrams exhibit slight enrichment in large ion lithophile elements (LILEs) relative to high field strength elements (HFSEs) and positive anomalies in Sr, Pb and Eu and negative anomalies in Zr and Nb relative to the adjacent elements. The REE plots of these rocks display increasing trend from La to Sm, positive Eu anomaly (Eu/Eu1 ​= ​1.06–1.54) and an almost flat pattern from medium REE (MREE) to heavy REE (HREE) region [(Gd/Yb)N ​= ​1–1.17]. Moreover, clinopyroxenes from the cumulate rocks have low REE contents and show marked depletion in light REE (LREE) compared to MREE and HREE [(La/Sm)N ​= ​0.10–0.27 and (La/Yb)N ​= ​0.08–0.22]. The composition of calculated melts in equilibrium with the clinopyroxenes from less evolved cumulate samples are closely similar to island arc tholeiitic (IAT) magmas. Modal mineralogy, geochemical features and REE modeling indicate that Sabzevar cumulate rocks were formed by crystal accumulation from a hydrous depleted basaltic melt with IAT affinity. This melt has been produced by moderate to high degree (~15%) of partial melting a depleted mantle source, which partially underwent metasomatic enrichment from subducted slab components in an intra-oceanic arc setting.  相似文献   

8.
Tectonic slices and lenses of eclogite within mafic and ultramafic rocks of the Early Cretaceous–Eocene Naga Hills ophiolite were studied to constrain the physical conditions of eastward subduction of the Indian plate under the Burma microplate and convergence rate prior to the India–Eurasia collision. Some of the lenses are composed of eclogite, garnet-blueschist, glaucophanite and greenschist from core to margin, representing a retrograde hydrothermal alteration sequence. Barroisite, garnet, omphacite and epidote with minor chlorite, phengite, rutile and quartz constitute the peak metamorphic assemblage. In eclogite and garnet-blueschist, garnet shows an increase in Mg and Fe and decrease in Mn from core to rim. In chlorite in eclogite, Mg increases from core to rim. Inclusions of epidote, glaucophane, omphacite and quartz in garnet represent the pre-peak assemblage. Glaucophane also occurs profusely at the rims of barroisite. The matrix glaucophane and epidote represent the post-peak assemblage. The Fe3+ content of garnet-hosted omphacite is higher than that of matrix omphacite, and Fe3+ increases from core to rim in matrix glaucophane. Albite occurs in late stage veins. P – T pseudosection analysis indicates that the Naga Hills eclogites followed a clockwise P – T path with prograde metamorphism beginning at ∼1.3 GPa/525 °C and peaking at 1.7–2.0 GPa/580–610 °C, and subsequent retrogression to ∼1.1 GPa/540 °C. A comparison of these P – T conditions with numerical thermal models of plate subduction indicates that the Naga Hills eclogites probably formed near the top of the subducting crust with convergence rates of ∼ 55–100 km Myr−1, consistent with high pre-collision convergence rates between India and Eurasia.  相似文献   

9.
We discuss here the mineralogical and geochemical characteristics of mafic intrusive rocks from the Nagaland-Manipur Ophiolites (NMO) of Indo-Myanmar Orogenic Belt, northeast India to define their mantle source and tectonic environment. Mafic intrusive sequence in the NMO is characterized by hornblende-free (type-I) and hornblende-bearing (type-II) rocks. The type-I is further categorized as mafic dykes (type-Ia) of tholeiitic N-MORB composition, having TiO2 (0.72–1.93 wt.%) and flat REE patterns (LaN/YbN = 0.76–1.51) and as massive gabbros (type-Ib) that show alkaline E-MORB affinity, having moderate to high Ti content (TiO2 = 1.18 to 1.45 wt.%) with strong LREE-HREE fractionations (LaN/YbN = 4.54–7.47). Such geochemical enrichment from N-MORB to E-MORB composition indicates mixing of melts derived from a depleted mantle and a fertile mantle/plume source at the spreading center. On the other hand, type-II mafic intrusives are hornblende bearing gabbros of SSZ-type tholeiitic composition with low Ti content (TiO2 = 0.54 wt.%–0.86 wt.%) and depleted LREE pattern with respect to HREE (LaN/YbN = 0.37–0.49). They also have high Ba/Zr (1.13–2.82), Ba/Nb (45.56–151.66) and Ba/Th (84.58–744.19) and U/Th ratios (0.37–0.67) relative to the primitive mantle, which strongly represents the melt composition generated by partial melting of depleted lithospheric mantle wedge contaminated by hydrous fluids derived from subducting oceanic lithosphere in a forearc setting. Their subduction related origin is also supported by presence of calcium-rich plagioclase (An16.6–32.3). Geothermometry calculation shows that the hornblende bearing (type-II) mafic rocks crystallized at temperature in range of 565°–625 °C ± 50 (at 10 kbar). Based on these available mineralogical and geochemical evidences, we conclude that mid ocean ridge (MOR) type mafic intrusive rocks from the NMO represent the section of older oceanic crust which was generated during the divergent process of the Indian plate from the Australian plate during Cretaceous period. Conversely, the hornblende-bearing gabbros (type-II) represent the younger oceanic crust which was formed at the forearc region by partial melting of the depleted mantle wedge slightly modified by the hydrous fluids released from the subducting oceanic slab during the initial stage of subduction of Indian plate beneath the Myanmar plate.  相似文献   

10.
唐加-松多古特提斯缝合带的提出改变了地学界对青藏高原古特提斯演化格局的认识。为进一步约束唐加-松多古特提斯缝合带中蛇绿岩的岩石成因及类型, 以松多地区的超基性岩为研究对象, 对其进行了岩石学和全岩地球化学研究。结果显示, 松多地区超基性岩与原始地幔相比具有较高的MgO和TFe2O3含量, 以及较低的Al2O3和TiO2含量。样品稀土元素总含量介于4.04×10-6~9.31×10-6之间, 大部分低于原始地幔值。稀土元素配分曲线呈较宽缓的"U"型, 轻稀土元素较富集。微量元素分布形式与全球深海橄榄岩的微量元素分布形式基本一致, 具有明显的Th、Nb负异常, 大部分样品具有轻微的Zr、Hf负异常。定量模拟估算表明, 研究区超基性岩主要为尖晶石二辉橄榄岩地幔批式熔融后的难熔残留体, 熔融程度大于25%, 并具一定程度石榴子石相熔融的特征, 未受到后期岩石-熔体反应的改造, 其原岩应为亏损的深海橄榄岩。结合区域研究成果, 松多地区超基性岩可能形成于大洋中脊(MOR)环境, 为典型的大洋中脊玄武岩(MORB)型蛇绿岩端元之一。  相似文献   

11.
The>2000 km Indus-Yarlung Tsangpo suture zone(IYSZ)is composed of the Neo-tethys oceanic remnants,flysch units and related continental rocks,which has been regarded as the boundary between the Eurasian and Indian terranes.Among the ophiolitic complexes,the Purang ophiolite is the biggest massif in the IYSZ,and many studies have been conducted on this ophiolite.However,previous studies have mainly focused on harzburgite,clinopyroxenite and dunite.Field observations show that mafic dykes were emplaced within the Purang ophiolite.However,petrogenetic evolutions of those mafic dykes are poorly understood.In this study,we present new LA-ICP-MS zircon U-Pb dating results,whole-rock geochemistry and Sr-Nd-Hf isotope analyses for microgabbro,gabbro and dolerite dykes from the Purang ophiolite of the southwestern IYSZ,respectively.Three samples yielded zircon U-Pb ages of144.2±2.1 Ma.127.9±2.3 Ma and 126.5±0.42 Ma,suggesting two different phases of magmatic activities distinctly.Whole-rock geochemical results suggest that the gabbro samples show alkaline features marked by enrichments of light rare earth elements(LREE)and large-ion lithophile elements(LILE),as well as Nb-Ta elements,suggesting an oceanic island basalt-like(OIB-like)geochemical affinity.However,the dolerite and microgabbro samples demonstrate sub-alkaline characteristics with normal mid-oceanic ridge basalt-like(N-MORB-like)geochemical features.Three distinct mafic dykes show significant Rb element depletion.The geochemical data and Sr-Nd-Hf isotopic features suggest that the microgabbro and gabbro rocks were derived from a depleted mantle that had been metasomatized by partial melts of sediments and enriched slab-derived fluids.The dolerite was also originated from a depleted mantle marked by significantly depleted Sr-Nd-Hf compositions,which was not influenced by enriched slab-derived fluids and sediments contamination during subsequent evolution.The isotope and geochemical data and tectonic diagrams suggest a tectonic transition from a within-plate to a midoceanic ridge basalt-like(MORB-like)setting during the period from ca.144 Ma to 127 Ma.Combined with regional background and this study,we propose that these mafic dykes were formed in an oceanic back-arc basin setting.Additionally,integrated with previous studies,we suggest that the geodynamic evolution of the southwestern and central parts of the Neo-Tethys oceanic basin is comparable in Early Cretaceous.  相似文献   

12.
We present new geochemical analyses of minerals and whole rocks for a suite of mafic rocks from the crustal section of the Othris Ophiolite in central Greece. The mafic rocks form three chemically distinct groups. Group 1 is characterized by N-MORB-type basalt and basaltic andesite with Na- and Ti-rich clinopyroxenes. These rocks show mild LREE depletion and no HFSE anomalies, consistent with moderate degrees (~15%) of anhydrous partial melting of depleted mantle followed by 30–50% crystal fractionation. Group 2 is represented by E-MORB-type basalt with clinopyroxenes with higher Ti contents than Group 1 basalts. Group 2 basalts also have higher concentrations of incompatible trace elements with slightly lower HREE contents than Group 1 basalts. These chemical features can be explained by ~10% partial melting of an enriched mantle source. Group 3 includes high MgO cumulates with Na- and Ti-poor clinopyroxene, forsteritic olivine, and Cr-rich spinel. The cumulates show strong depletion of HFSE, low HREE contents, and LREE enrichments. These rocks may have formed by olivine accumulation from boninitic magmas. The petrogenesis of the N-MORB-type basalts and basaltic andesites is in excellent agreement with the melting conditions inferred from the MOR-type peridotites in Othris. The occurrence of both N- and E-MORB-type lavas suggests that the mantle generating the lavas of the Othris Ophiolite must have been heterogeneous on a comparatively fine scale. Furthermore, the inferred parental magmas of the SSZ-type cumulates are broadly complementary to the SSZ-type peridotites found in Othris. These results suggest that the crustal section may be genetically related to the mantle section. In the Othris Ophiolite mafic rocks recording magmatic processes characteristic both of mid-ocean ridges and subduction zones occur within close spatial association. These observations are consistent with the formation of the Othris Ophiolite in the upper plate of a newly created intra-oceanic subduction zone. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

13.
本文对塔里木盆地二叠纪大火成岩省中瓦吉里塔格地区超镁铁质隐爆角砾岩进行了铂族元素(PGE)和主、微量及稀土元素分析和研究。结果显示,隐爆角砾岩中Os、Ir、Ru、Rh、Pt和Pd含量分别为0.36×10-9~1.08×10-9、0.23×10-9~0.44×10-9、0.29×10-9~0.92×10-9、0.11×10-9~0.18×10-9、1.88×10-9~3.16×10-9和1.39×10-9~3.52×10-9,均低于原始地幔,与夏威夷苦橄岩相似。该岩石的Pd/Ir比值在3.6~11.9之间,PGE分配模式呈一条正倾斜的曲线,表现出一定程度的分异,具有非俯冲背景下产生的基性-超基性岩的PGE配分特点。略高于原始地幔但变化较小的Cu/Pd比值(5.1×104~12.1×104)表明其岩浆在上升侵位过程中并没有发生明显的饱和硫化物熔离作用,而岩浆源区在部分熔融过程中可能有少量残留的硫化物存在。隐爆角砾岩全岩的IPGE元素与MgO之间基本上呈正相关,而PPGE元素与MgO之间则略成负相关或无明显相关性,指示PGE的分异主要受到橄榄石结晶分异作用的控制。地球化学特征显示隐爆角砾岩的稀土元素总量高度富集(964.1×10-6~1299×10-6)和轻、重稀土强烈分馏((La/Yb)N=45.88~64.90),且微量元素蛛网图上大离子亲石元素富集和Nb、Ta的轻微亏损以及Zr、Hf的明显贫化,表明岩石可能遭受一定程度的地幔交代作用影响。但是,角砾与胶结物具有相近的PGE特征表明交代作用对PGE的影响并不大,暗示PGE可能主要赋存于禁锢在硅酸盐矿物内的硫化物包裹体中。  相似文献   

14.
We present a new, reliably dated Mesoproterozoic paleopole for Siberia, based on a combined geochronological and paleomagnetic study of mafic rocks within the Mesoproterozoic Sololi Group of the Olenek Uplift in northern Siberia. Ion microprobe (SHRIMP) U–Pb analysis yields crystallisation ages of 2036 ± 11 Ma for zircon from a basement granite and 1473 ± 24 Ma for baddeleyite from a large dolerite sill within the Kyutingde Formation. The baddeleyite result indicates that the lower Sololi Group is significantly older than was suggested by previous K–Ar results. Paleomagnetic analysis of the dolerite sill and related mafic intrusive rocks yields a paleopole at 33.6°N, 253.1°E, A95 = 10.4°. A positive baked-contact test between the Kyutingde sill and sedimentary country rocks shows that the magnetisation is primary. Comparison of this paleopole with coeval results for Laurentia provides a revised reconstruction between Siberia and Laurentia, and implies that these two continents were parts of a single Mesoproterozoic supercontinent since at least 1473 Ma. We argue that Siberia, Laurentia, and Baltica belonged to the same supercontinent between 1473 Ma and mid-Neoproterozoic time.  相似文献   

15.
Northeastern (NE) China is a well-documented example of a collisional zone characterized by widespread post-orogenic granites and mafic–ultramafic complexes. Based on a study of the Hongqiling and Piaohechuan Cu–Ni sulfide-bearing mafic–ultramafic complexes in central Jilin province, we present geological, petrological, geochemical and geochronological data which indicates their post-orogenic origin.The Hongqiling complex comprises pyroxenite, olivine websterite, lherzolite, gabbro and leucogabbro. Zircon U–Pb SHRIMP analyses on a leucogabbro of the Hongqiling complex yield a weighted mean 206Pb–238U age of 216±5 Ma. The Piaohechuan complex is composed of gabbro, pyroxenite and dolerite, exposed as dikes. A plagioclase-bearing pyroxenite has a U–Pb zircon weighted mean 206Pb–238U age of 217±3 Ma, identical to that of the Hongqiling complex. These ages are coeval with the emplacement of A-type granites in the area, but slightly younger than the regional metamorphism (240 Ma) and syn-orogenic granitic magmatism (246±4 Ma). This suggests that these mafic–ultramafic complexes are post-orogenic in origin. The age data also indicated a short period of lithospheric stabilization of about 30 Ma after cessation of orogenic activity.Geochemical investigation indicates that the primary mafic magma was a lithospheric mantle-derived basalt resulting from the upwelling of asthenosphere due to lithospheric delamination during post-orogenic processes. The magmatic source was contaminated by a small amount of crustal material, and subsequent crystal fractionation resulted in the Cu–Ni mineralization.The widespread occurrence of mafic–ultramafic complexes in the Xing'an–Mongolian Orogenic Belt of NE China and in the Altay–Tianshan–Junggar Orogenic Belt of Northern Xinjiang indicates that mafic intrusions are an important magmatic suite that evolved during post-orogenic processes. Portions of this mafic magma could have underplated the lower crust, and served as the heat source for associated late-stage granitic magmas.  相似文献   

16.
吉林晚古生代榆木川基性岩的地球化学特征及其岩石成因   总被引:2,自引:0,他引:2  
位于兴蒙造山带张广才岭块体的榆木川辉绿玢岩,K—AT年龄测定表明其形成年龄为262~264Ma,主微量元素研究表明,辉绿玢岩SiO2含量为47.02%~52.60%,贫K2O(0.13%~0.47%),Na2O〉K2O,属于低钾拉斑系列,稀土分布模式属于轻稀土略亏损的平坦型,微量元素原始地幔标准化图解中大离子亲石元素(Rh、Ba、Sr)较为富集,但不存在高场强元素(Nb、Ta)的亏损,同位素组成显示Sr同位素初始比值在0.704958~0.705631之间,εNd(t)值(72~81)较高且变化较小,表明其来源于亏损地幔的部分熔融且成岩过程中未受到地壳物质的混染。基性岩形成于造山后的伸展拉张背景,并结合前人的研究成果,认为晚古生代(约270Ma)兴蒙造山带已经进入晚期,此时加厚的岩石圈由于重力不稳定发生拆沉减薄作用,导致软流圈的大量上涌和岩石圈拉张,从而引起先存亏损岩石圈地幔的部分熔融,最后侵入地壳深部形成研究区辉绿玢岩。  相似文献   

17.
宁芜火山岩的地球化学特征及其意义   总被引:40,自引:30,他引:40  
王元龙  张旗等 《岩石学报》2001,17(4):565-575
宁芜早白垩世火山岩由中基性成分组成,与碱性玄武岩比较,火山岩贫Ti,Fe,富K和LREE,Na2O/K2O近似等于1,在SiO2-K2O图中龙王山组的全部和大王山组的大部落入橄榄玄粗岩区域,属于橄榄玄粗岩系列,为富集LILE和水的地幔部分熔融的产物。宁芜火山岩产于板内环境,富钾质岩浆的形成可能与软流圈地幔上涌和岩石圈的伸展-减薄或裂谷作用有关。宁芜火山岩富集大离子亲石元素,亏损高场强元素,Ti,Nb(Ta)具负异常。宁芜火山岩底部的龙王山组和主体大王山组具有不同的地球化学特征:与大王山组相比,前者更富Rb,Ba,K,而相对贫LREE(La,Ce,Nd),Eu,Sr,Isr较高,εNd(t)较低。由于龙王山组层位低,大王山组层位高,不可能解释为分离结晶作用的结果,而只能说明在火山岩喷发的早期阶段(龙王山组),岩浆穿过陆壳上升过程中与围岩发生过混染作用,从围岩中带入较多的K、Rb,Ba等大离子亲石元素,从而使得Isr较高和εNd(t)较低。龙王山组SiO2-K2O不具相关性也说明陆壳混染的影响。至宁芜火山岩喷发的极盛时期(大王山组),岩浆与围岩的混染程度降低,Isr和Nd(t)值更接近岩浆的初始组成。据了解,在长江中下游地区有许多晚中生代的埃达克质岩出露,埃达克质岩来自加厚的陆壳底部,需要很高的温度才能使下地壳基性岩发生部分熔融。宁芜一带火山岩的大规模喷出,表明在早白垩世初期该区地幔处于十分活跃的状态,可能有大量橄榄玄粗质岩浆底侵到下地壳底部,烘烤下地壳使之熔融形成埃达克质熔浆。  相似文献   

18.
榆树沟变质基性-超基性岩带出露于塔里木板块与哈萨克斯坦板块之间的南天山北缘,主要由变质橄榄岩和变质基性岩组成。变质橄榄岩富相容元素Cr、Co和Ni,贫不相容元素,太离子亲石元素Ba、Rb和Sr含量较低,与世界典型蛇绿岩相似,代表了地幔残留物特征。REE分布模式为LREE亏损型,REE含量小于或等于2.5倍球粒陨石,类似于阿尔卑斯型变质橄榄岩,显示榆树沟的变质橄榄岩是原始地幔岩部分熔融萃取出玄武岩后的残留物。变质基性岩绝大部分为LREE亏损型,类似于N-MORB。所有样品均以富集Nb和Ta、高场强元素不分异,以及微量元素含量低为特征,批示岩浆源区总体上类似于MORB,Nb、Ta富集可能与OIB型源区有关,Nd、Sr同位素特征也显示其具有OIB型源区特征。综合分析认为,榆对沟变质基性岩石的岩浆可能经历了两个阶段的演化过程,即上地幔底部或下地幔顶部的OIB型原始岩浆形成阶段和软流圈地幔亏损阶段。  相似文献   

19.
The Xigaze ophiolite in the central part of the Yarlung–Zangbo suture zone, southern Tibet, has a well-preserved sequence of sheeted dykes, basalts, cumulates and mantle peridotites at Jiding and Luqu. Both the basalts and diabases at Jiding have similar compositions with SiO2 ranging from 45.9 to 53.5 wt%, MgO from 3.1 to 6.8 wt% and TiO2 from 0.87 to 1.21 wt%. Their Mg#s [100Mg/(Mg + Fe)] range from 40 to 60, indicating crystallization from relatively evolved magmas. They have LREE-depleted, chondrite-normalized REE diagrams, suggesting a depleted mantle source. These basaltic rocks have slightly negative Nb- and Ti-anomalies, suggesting that the Xigaze ophiolite represents a fragment of mature MORB lithosphere modified in a suprasubduction zone environment. The mantle peridotites at Luqu are high depleted with low CaO (0.3–1.2 wt%) and Al2O3 (0.04–0.42 wt%). They display V-shaped, chondrite-normalized REE patterns with (La/Gd)N ratios ranging from 3.17 to 64.6 and (Gd/Yb)N from 0.02 to 0.20, features reflecting secondary metasomatism by melts derived from the underlying subducted slab. Thus, the geochemistry of both the basaltic rocks and mantle peridotites suggests that the Xigaze ophiolite formed in a suprasubduction zone.Both the diabases and basalts have Pd/Ir ratios ranging from 7 to 77, similar to MORB. However, they have very low PGE abundances, closely approximating the predicted concentration in a silicate melt that has fully equilibrated with a fractionated immiscible sulfide melt, indicating that the rocks originated from magmas that were S-saturated before eruption. Moderate degrees of partial melting and early precipitation of PGE alloys explain their high Pd/Ir ratios and negative Pt-anomalies. The mantle peridotites contain variable amounts of Pd (5.99–13.5 ppb) and Pt (7.92–20.5 ppb), and have a relatively narrow range of Ir (3.47–5.01 ppb). In the mantle-normalized Ni, PGE, Au and Cu diagram, they are relatively rich in Pd and depleted in Cu. There is a positive correlation between CaO and Pd. The Pd enrichment is possibly due to secondary enrichment by metasomatism. Al2O3 and Hf do not correlate with Ir, but show positive variations with Pt, Pd and Au, indicating that some noble metals can be enriched by metasomatic fluids or melts carrying a little Al and Hf. We propose a model in which the low PGE contents and high Pd/Ir ratios of the basaltic rocks reflect precipitation of sulfides and moderate degrees of partial melting. The high Pd mantle peridotites of Xigaze ophiolites were formed by secondary metasomatism by a boninitic melt above a subduction zone.  相似文献   

20.
南天山北部上志留统巴音布鲁克组火山岩系以中基性喷出岩为主,并有辉长岩侵入,其矿物组合中都含有角闪石,岩层中爆发相火山碎屑岩极为发育。各种火山-侵入岩的LREE和LILE强烈富集、HFSE相对亏损,出现明显的Ta、Nb负异常,(La/Yb)N:2.92~5.21,Nh/La=0.22—0.33,具有岛弧岩浆岩的特征。zr/Nb=26~47、Hf/Ta=11.9—19.9,暗示其源区为类似于N—MORB的亏损地幔;高的Th、LREE含量和高于正常弧火山岩、低于洋岛玄武岩(OIB)的HFSE绝对丰度,较小的εNd(t)值(+3.23~+6.15)、较大的(^87Sr/^86Sr)。值(0.7044—0.7063),εNd(t)与(^87Sr/^86Sr)。间呈明显的线性负相关关系,并且分别与LILE/HFSE之间呈负相关和正相关关系。上述特征反映出巴音布鲁克火成岩的岩石成因中既有俯冲洋壳板片流体-沉积物的加入,也有板片熔体组分的贡献,在地球化学上具有正常岛孤玄武岩(IAB)与富铌岛弧玄武岩(NEAB)之间过渡系列的特征。该套火成岩与中天山南缘蛇绿混杂岩带紧邻,地层时代也与南天山洋俯冲-消减时代相当,它应当是南天山洋盆于晚志留世时发生的俯冲-消减所引发的岛弧火山-岩浆作用的地质记录。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号