首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Groundwater samples were analyzed from 71 springs and wells as part of a larger study in a region of compressional tectonic regime. The study site covers the Peshawar basin and surroundings in the Himalayan foreland of Pakistan. The northern portion is mountainous and the water table is discontinuous in different intermontane valleys, with abundant springs (with normal and anomalous temperatures and composition). The southern part is divided into isolated basins with a number of drilled (“deep”) and dug (“shallow”) wells. Hydrochemical signatures of elevated strontium (Sr), SiO2, boron (B)—and the geothermometric signatures—all indicate a deep circulation of the emerging groundwater. Moreover, for several of the sample sites, water chemical compositions, measured spring and water well temperatures, and reservoir temperatures calculated for spring waters, all point to origin from deep horizons within the basin. Remarkable proximity of all the thermal and hydrochemical anomalies to major faults suggests that the waters ascended along these faults from greater depths. The area is a natural western extension of the Himalayan Geothermal Belt described in earlier literature for the eastern and central Himalayas.  相似文献   

2.
The city of Bath is a World Heritage site and its thermal waters, the Roman Baths and new spa development rely on undisturbed flow of the springs (45 °C). The current investigations provide an improved understanding of the residence times and flow regime as basis for the source protection. Trace gas indicators including the noble gases (helium, neon, argon, krypton and xenon) and chlorofluorocarbons (CFCs), together with a more comprehensive examination of chemical and stable isotope tracers are used to characterise the sources of the thermal water and any modern components. It is shown conclusively by the use of 39Ar that the bulk of the thermal water has been in circulation within the Carboniferous Limestone for at least 1000 years. Other stable isotope and noble gas measurements confirm previous findings and strongly suggest recharge within the Holocene time period (i.e. the last 12 kyr). Measurements of dissolved 85Kr and chlorofluorocarbons constrain previous indications from tritium that a small proportion (<5%) of the thermal water originates from modern leakage into the spring pipe passing through Mesozoic valley fill underlying Bath. This introduces small amounts of O2 into the system, resulting in the Fe precipitation seen in the King’s Spring. Silica geothermometry indicates that the water is likely to have reached a maximum temperature of between 69–99 °C, indicating a most probable maximum circulation depth of ∼3 km, which is in line with recent geological models. The rise to the surface of the water is sufficiently indirect that a temperature loss of >20 °C is incurred. There is overwhelming evidence that the water has evolved within the Carboniferous Limestone formation, although the chemistry alone cannot pinpoint the geometry of the recharge area or circulation route. For a likely residence time of 1–12 kyr, volumetric calculations imply a large storage volume and circulation pathway if typical porosities of the limestone at depth are used, indicating that much of the Bath-Bristol basin must be involved in the water storage.  相似文献   

3.
The aim of this study was to determine geochemical properties of groundwater and thermal water in the Misli Basin and to assess thermal water intrusion into shallow groundwater due to over-extraction. According to isotope and hydrochemical analyses results, sampled waters can be divided into three groups: cold, thermal, and mixed waters. Only a few waters reach water–rock chemical equilibrium. Thermal waters in the area are characterized by Na+–Cl–HCO3, while the cold waters by CaHCO3 facies. On the basis of isotope results, thermal waters in the Misli basin are meteoric origin. In particular, δ18O and δ2H values of shallow groundwater vary from −10.2 to −12.2‰ and −71.2 to −82‰, while those of thermal waters range from −7.8 to −10.1‰ and from −67 to −74‰, respectively. The tritium values of shallow groundwater having short circulation as young waters coming from wells that range from 30 to 70 m in depth vary from 10 to 14 TU. The average tritium activity of groundwater in depths more than 100 m is 1.59 ± 1.16, which indicates long circulation. The rapid infiltration of the precipitation, the recycling of the evaporated irrigation water, the influence of thermal fluids and the heterogeneity of the aquifer make it difficult to determine groundwater quality changes in the Misli Basin. Obtained results show that further lowering of the groundwater table by over-consumption will cause further intrusion of thermal water which resulted in high mineral content into the fresh groundwater aquifer. Because of this phenomenon, the concentrations of some chemical components which impairs water quality in terms of irrigation purposes in shallow groundwaters, such as Na+, B, and Cl, are highy probably expected to increase in time.  相似文献   

4.
 The Alto Guadalentín detrital aquifer is both overexploited and polluted. Water conductivity ranges between 1200 and 4900 μS cm–1, HCO3 between 1000 and 1990 mg l–1, and PCO2 between 0.041 and 1.497 bars. The temperature and chemical composition of the water show a positive thermal anomaly directly attributable to the neotectonic activity in the area. The high CO2 content has caused the abandonment of numerous wells due to water corrosiveness which attacks pumping equipment. Received: 10 October 1995 · Accepted: 14 November 1995  相似文献   

5.
 The circulation of cold, deep water is one of the controlling factors of the Earth's climate. Forty percent of this water enters the world ocean through the Southwest Pacific as a deep western boundary current (DWBC) flowing northwards at bathyal to abyssal depths, east of the New Zealand microcontinent. South of latitude 50°S, the DWBC is intimately linked with the Antarctic circumpolar current (ACC), which is the prominent force for the shallow-water circulation. The Pacific DWBC is presently the largest single contributor of deep ocean water, and deciphering its evolution is of fundamental importance to understanding ocean and climate history, and global ocean hydrography. The evolution of the DWBC system, and of related circum-Antarctic currents, has taken place since 30–25 Ma when plate movements created the first oceanic gaps south of Australia and South America. The stratigraphic record preserved in sediment drifts of the Southwest Pacific, in eastern New Zealand, is the best available for deciphering the Neogene history of Southern Ocean water masses, and of the circulation of the ACC, DWBC and their precursor systems. Major current activity commenced on the New Zealand margin in the late Eocene or early Oligocene (Hoiho Drift; early ACC) and was widespread by the mid-late Oligocene (Marshall Paraconformity and Weka Pass Limestone drift; ACC). During the Neogene the eastern South Island continental shelf built seawards by accretion at its outer edge of large Miocene current drifts up to tens of kilometres long and hundreds of metres thick (Canterbury drifts). Also commencing in the mid-Cenozoic, but in depths >2000 m, the DWBC emplaced large deep-water sediment drifts. Rates of drift deposition accelerated considerably in the late Neogene, when climatic change (and particularly glacial sea-level falls) caused the delivery of large volumes of turbiditic sediment into the path of the DWBC via the Bounty and Hikurangi channels. Received: 9 August 1995 / Accepted: 15 January 1996  相似文献   

6.
The exploration for hydrocarbons in the deepest tectonic »floor« underneath the Vienna basin with depths of 6.5–8.5 km, was undertaken between 1977 and 1985 and based on several important conditions:
  • -The assumption that an autochthonous sedimentary cover lies upon the Crystalline Basement (Bohemian massif) below the Neogene basin infill and the Alpine-Carpathian nappes.
  • -Expressed high zones exist within the Vienna basin with exploration targets at depths reachable by drilling.
  • -The significant accumulation of oil- and gasfields m shallower position over the area of interest.
  • As a result of the 4 deep wells drilled for the abovementioned targets more information has been acquired concerning the stratigraphy, facies distribution and depth positions of the autochthonous Jurassic, Upper Cretaceous and Tertiary Molasse along the Eastern flank of the Crystalline basement spur of the Bohemian Massif. The allochthonous, Waschberg- und Flyschzone, both Alpine-Carpathian units underneath the Vienna basin, have been penetrated by these wells for the first time and the overthrust of the Calcareous Alps over the Flysch nappes has been proven (well Aderklaa UT1). Additional information about Neogene sedimentation and faulting was obtained. Drilling results made it possible to get a more comprehensive picture of the 3 tectonic »floors« of the Vienna basin, m detail represented by the Zistersdorf and Aderklaa profiles. Thick basin marls of the Upper Jurassic represent a large source potential for hydrocarbons. The favourable reservoir layers, detected in the Mesozoic sections of the foreland area have not been encountered here till now. A high supply of free hydrocarbons within the deepest floor must be assumed on the basis of many oil and gas shows, a major gas kick in Zistersdorf ÜTla and a limited oil production from a fractured zone along a thrustline in the Maustrenk ÜTla well, both occurring in an overpressured environment.  相似文献   

    7.
     Aquifers in the arid alluvial basins of the southwestern U.S. are recharged predominantly by infiltration from streams and playas within the basins and by water entering along the margins of the basins. The Tucson basin of southeastern Arizona is such a basin. The Santa Catalina Mountains form the northern boundary of this basin and receive more than twice as much precipitation (ca. 700 mm/year) as does the basin itself (ca. 300 mm/year). In this study environmental isotopes were employed to investigate the migration of precipitation basinward through shallow joints and fractures. Water samples were obtained from springs and runoff in the Santa Catalina Mountains and from wells in the foothills of the Santa Catalina Mountains. Stable isotopes (δD and δ18O) and thermonuclear-bomb-produced tritium enabled qualitative characterization of flow paths and flow velocities. Stable-isotope measurements show no direct altitude effect. Tritium values indicate that although a few springs and wells discharge pre-bomb water, most springs discharge waters from the 1960s or later. Received, February 1997 · Revised, September 1997 · Accepted, September 1997  相似文献   

    8.
    The Kingston Basin in Jamaica is an important hydrologic basin in terms of both domestic and industrial sector. The Kingston hydrologic basin covers an area of approximately 258 km2 of which 111 km2 underlain by an alluvium aquifer, 34 km2 by a limestone aquifer and the remainder underlain by low permeability rocks with insignificant groundwater resources. Rapid development in recent years has led to an increased demand for water, which is increasingly being fulfilled by groundwater abstraction. A detailed knowledge of the water quality can enhance understanding of the hydrochemical system, promoting sustainable development and effective management of groundwater resources. To achieve this, a hydrochemical investigation was carried out in the Kingston Basin. Results showed that the water is Na–Ca–Cl–HCO3 and Na–Ca–HCO3 type with higher concentrations of nitrate, sodium and chloride as the leading causes of contamination in most of the wells. High concentrations of nitrate correlate with wells from areas of high population density and could be attributed to anthropogenic causes, mainly involving improper sewage treatment methodologies or leaking sewer lines. Jamaica, owing to its island nature, has the continuous problem of saline water intrusion, and this is reflected in the higher levels of chloride, sodium and conductivity in the water samples collected from the wells. The wells studied show higher concentrations of chloride ranging from around 10.2 mg/l in wells located approximately (4931.45 m) from the coast to around 234 mg/l in the well located near to the coast. The conductivity values also closely correlate with the chloride levels found in the wells.  相似文献   

    9.
    西宁盆地热储构造概念模型的建立   总被引:4,自引:0,他引:4  
    基于西宁盆地地热地质条件的研究,在Donaldson管状模型的基础上,提出的西宁盆地热储构造概念模型是大地热流为热源一低热导率岩层聚热-深循环逐渐加热受迫对流为机制-构造控水控热。进而揭示出,尽管西宁盆地地热异常分布范围较广,但也并非“遍地有热”。在生产实践中,关键是要较为准确地确定地热井的最佳构造部位和找到高渗透率的热储。  相似文献   

    10.
    The Vienna Basin fault system is a slow moving (1–2 mm/y) active sinistral fault extending from the Alps through the Vienna Basin into the Carpathians. It comprises an array of NE-striking sinistral strike-slip segments, which differ both by their kinematic and seismologic properties. Among these, the Lassee segment 30 km east of Vienna is of particular interest for seismic hazard assessment as it shows a significant seismic slip deficit. The segment is located about 8 km from the Roman city of Carnuntum, for which archaeological data indicate a destructive earthquake in the fourth century a.d. (local intensity about 9 EMS-98). Mapping of the Lassee segment using 2D seismic, GPR, tectonic geomorphology and Pleistocene basin analysis shows a negative flower structure at a releasing bend of the Vienna Basin fault. The hanging wall of the flower structure includes a Quaternary basin filled with up to 100-m thick Pleistocene growth strata. Faults root in the basal detachment of the Alpine-Carpathian floor thrust at about 8 km depth. The active faults east of the flower structure offset a Middle Pleistocene terrace of the Danube River forming an up to 20-m high composite fault scarp. High-resolution GPR (40, 500 MHz) mapped at least four distinct surface-breaking faults along this scarp including three faults, which are covered by about 2 m of post-tectonic strata. The youngest fault offsets these strata and coincides with a 0.5-m high scarp. This scarp may be interpreted as the product of a single surface-breaking earthquake, provided that the mapped fault offset formed during coseismic surface rupture. Data indicate that the Lassee segment may well be regarded the source of the fourth century earthquake. The interpretation is in line with local attenuation relations indicating a source close to the damaged site, observed fault dimensions and the fault offsets recorded by GPR and morphology.  相似文献   

    11.
    Groundwater is often the only water source in semi-arid regions of Turkey. Günyüzü Basin, located in the Sakarya River basin, SW of Eskişehir, exhibits semi-arid conditions. The study area is composed of Paleozoic metamorphic rocks, Eocene granitic rocks, Neogene sedimentary rocks, and Quaternary alluvium. In the basin, Paleozoic Marbles are the main reservoir rocks for hot and cold water, bordered by impermeable diabases dykes at the sides and by impermeable granites and schists. Neogene-aged limestones, conglomerates and alluvium represent the other significant aquifers. Water samples chosen to exemplify the aquifer characteristics, were collected from springs and wells in both the dry and the wet seasons. The cation and anion permutation of the samples show that carbonates are the dominant lithology in the formation of chemical composition. δ18O (−11.2 to −8.9‰) and δ2H (−79 to −60‰) isotopic values show that all waters (thermal and cold) are meteoric in origin. The hydrological, hydrochemical, and isotopic properties of the waters reveal that there exist two main groups of groundwater systems; one of these is deep circulating, while the other one is shallow. Tritium values, 0–4 TU (Tritium Unit) indicate the presence of old, static water in these aquifer systems.  相似文献   

    12.
    Zerovalent sulfur and inorganic polysulfides were determined in nine sulfide-rich water wells in central and southern Israel. Although the two locations belong to the same aquifer, they are characterized by different pH and hydrogen sulfide levels. Hydrogen sulfide in the central Israel wells ranged between 19 and 32 μM, and the pH was 7.26 ± 0.07. The southern basin is characterized by lower water circulation, lower pH (around 6.8), and higher hydrogen sulfide levels (>470 μM). Polysulfides were determined by a rapid single-phase methylation using methyl trifluoromethanesulfonate (methyl triflate) reagent. The summary polysulfide concentration for S42−–S72− species was found to be around 0.14–0.75 μM in the central region of Israel and substantially higher, 2.3–4.6 μM in the southern region. The sum of polysulfide zerovalent sulfur and colloidal sulfur was quantitatively detected by cyanide derivatization and compared to polysulfide sulfur determined by methyl triflate derivatization and to the chloroform extraction of zerovalent sulfur. A method for the determination of sulfur undersaturation level—the ratio between dissolved elemental sulfur and its equilibrium concentration in the presence of solid sulfur—based on the observed levels of the major polysulfide species is described. The observed polysulfide speciation was compared with the predicted speciation under sulfur saturation conditions taking into account the water temperature, its ionic strength, and pH. Criteria for sulfur saturation versus unsaturated conditions were established based on (1) the chain length dependence of the ratio between the observed polysulfide concentrations and their predicted value under sulfur saturated conditions, and (2) the difference between the concentration of zerovalent sulfur, as determined by cyanolysis, and the total polysulfide sulfur. According to this dual criterion five of the water wells were classified as being undersaturated with respect to sulfur, though for all the examined water wells the majority of the zerovalent sulfur was in the form of polysulfide sulfur.  相似文献   

    13.
     The Tyrrhenian resort of S. Marinella (central Italy) is subjected to significant anthropogenic pressures during the summer vacation period, a common situation all along the Italian coast. Located 65 km NW of Rome on the southern slopes of the Tolfa Mountains, S. Marinella is built on a gently sloping, E–W trending belt which is cut by 14 N–S oriented ephemeral streams that discharge into the Tyrrhenian Sea. The low to medium permeability turbiditic sandstones which outcrop along this belt belong to the Late Cretaceous Pietraforte unit. Three environmental problems are addressed in this study. The first problem is related to the high water supply demand during the summer months which has forced local residents to dig a large number of wells. Extensive pumping from these wells has caused salt-water intrusion into the Pietraforte, thus compromising the domestic use of the groundwater. The second problem consists of the illegal dumping of urban solid waste, material that represents a hazard during significant rain events as well as a possible cause of groundwater contamination. The final issue addressed concerns the flooding potential of the 14 ephemeral streams that cross the inhabited area of S. Marinella, a risk which is highlighted by the disastrous flood which occurred on 2 October 1981 and during the period of the Roman Emperor Settimio Severo (205 A.D.). Some suggestions are proposed to mitigate and contain the effects of these problems. Received: 7 November 1995 / Accepted: 5 December 1996  相似文献   

    14.
    An example of identifying karst groundwater flow   总被引:3,自引:2,他引:1  
     Hydrogeological investigations for the purpose of regulating the karst aquifer were carried out in the mountain massif of Kucaj in the Carpatho-Balkan range of eastern Serbia. Different geophysical methods were applied in order to identify the position of karstified zones with active circulation of karst underground streams. Especially good results were obtained by using the spontaneous potential method for the exploration and construction of boreholes and wells. In the valleys of Crni Timok and Radovanska reka the measurements have been carried out upstream along the whole width of the alluvium to the limestone periphery. A number of positive and negative anomalies have been recorded. In the centres of positive anomalies several boreholes were located: HG-19 (centre of anomaly +30 mV, total length of the biggest cavern is 9 m); HG-1 (+20 mV, cavern of 2 m); HG-15 (max. +114 mV, effective cavernousness is 17%). Received: 20 February 1995 · Accepted: 12 September 1997  相似文献   

    15.
     The hot springs of Bristol and Bath and two geothermal wells at Southampton are located on a 155-km-long Avon–Solent Fracture Zone extending in a NW–SE direction from the Severn Estuary to the English Channel. Initiated during the Variscan earth movements and reactivated in Miocene times, the structure, which extends across the English Channel to France, is still active. With this discovery, it should now be possible to throw fresh light on the origin and movement of the thermal water at Bath and thus to protect the hot springs from derogation by limestone quarrying. Received: 16 October 1995 · Accepted: 13 February 1996  相似文献   

    16.
    The monoaromatic and total aromatic hydrocarbon fractions of two pairs of undegraded and moderately biodegraded crude oils from the Santa Maria basin (California) and the Vienna basin (Austria), all dominated by unresolved complex mixtures, were studied regarding their composition and toxicity towards the feeding rate of the marine mussel Mytilus edulis. Total aromatic and monoaromatic hydrocarbon fractions from sulphur-rich Monterey Formation crude oils were slightly more toxic than the fractions isolated from sulphur-lean Vienna basin oils. The ecotoxicity tests did not show any significant differences in toxicity of aromatic compounds from undegraded or in-reservoir biodegraded crude oils from the same oilfield although some differences in composition were observed. Organic sulphur compounds are suspected to cause the slightly higher toxicity of the aromatic hydrocarbon fractions from the Monterey oils.  相似文献   

    17.
    The Hamamboğazi spa in western Turkey was built around natural hot springs with discharge temperatures in the range of 30–54°C; the waters have near neutral pH values of 6.50–7.10 and a TDS content between 2,694 and 2,982 mg/l. Thermal water with a temperature of 47.5–73°C has been produced at 325 l/s from five wells since 1994, causing some springs to go dry. A management plan is required in the study area to maximize the benefits of this resource, for which currently proposed direct uses include heating in the district and greenhouses, as well as balneology in new spas in the area. The best use for the water from each spring or well will depend on its temperature, chemistry and location. The thermal waters are mixed Na–Mg–HCO3–SO4 fluids that contain a significant amount of CO2 gas. The chemical geothermometers applied to the Hamamboğazi thermal waters yield a maximum reservoir temperature of 130°C. Isotope results (18O, 2H, 3H) indicate that the thermal waters have a meteoric origin: rainwater percolates downward along fractures and faults, is heated at depth, and then rises to the surface along fractures and faults that act as a hydrothermal conduit. The basement around the Banaz Hamamboğazi resort is comprised of Paleozoic metamorphic schist and marbles exposed 8 km south and 15 km north of Banaz. Mesozoic marble, limestone and ophiolitic complex are observed a few km west and in the northern part of Banaz. These units were cut at a depth of 350–480 m in boreholes drilled in the area. Overlying lacustrine deposits are composed of fine clastic units that alternate with gypsum, tuff and tuffites of 200–350 m thickness. The marble and limestones form the thermal water aquifer, while lacustrine deposits form the impermeable cap.  相似文献   

    18.
    The main objective of this study was to assess the spatial and temporal variability of groundwater level fluctuations in the Amman–Zarqa basin, during the period 2001–2005. In the year 2003, as a consequence of war, there was a sudden increase in the population in this basin. Knowing that the basin is already heavily populated and witnesses most of the human and industrial activities in Jordan, this study was prompted to help make wise water resources management decisions to cope with the new situation. Data from 31 fairly distributed wells in the upper aquifer of the basin were subjected to geostatistical treatment. Kriging interpolation techniques have indicated that the groundwater flow directions remained almost constant over the years. The two main directions are SW–NE and E–W. Kriging mapped fluctuations have also showed that drop and rise events are localized in the basin. Forecasting possibilities for management purposes were tackled using autocorrelation analysis. The constructed autocorrelograms indicated, in general, the temporal dependence of seasonal water level fluctuations, and that forecasting can be carried out within a period of 3–21 months. Several suggestions were made to mitigate the drop and rise hazards in the detected sites.  相似文献   

    19.
    The southwestern part of the Lower Saxony Basin (LSB) is characterized by gravity and magnetic anomalies and by an extremely high thermal maturity of organic matter. This was for many years attributed to a Late Cretaceous intrusion, but actually deep burial is being debated. The complex thermal history of the area has been studied by fission track analysis. Zircon data provide evidence for widespread (hydro)thermal activity during the Permian and Upper Jurassic/Lower Cretaceous. Apatite ages indicate a major cooling event in the mid Cretaceous (∼89–72 Ma) reflecting the time of inversion of the LSB. During the Cretaceous, the cooling of the basin centre was rapid compared to the basin margins. Apatite fission track ages from borehole samples which are recently within the upper part of the APAZ indicate a young heating of the sedimentary sequences until present.  相似文献   

    20.
    The Oylat spa is located 80 km southeast of Bursa and 30 km south of Ineg?l in the Marmara region. With temperature of 40°C and discharge of 45 l/s, the Oylat main spring is the most important hot water spring of the area. Southeast of the spa the Forest Management spring has a temperature of 39.4°C and discharge of 2 l/s. The G?z spring 2 km north of the spa, which is used for therapy of eye disease, and cold waters of the Saadet village springs with an acidic character are the further important water sources of the area. EC values of Main spring and Forest Management hot spring (750–780 μS/cm) are lower than those of Saadet and G?z spring waters (2,070–1,280 μS/cm) and ionic abundances are Ca > Na + K > Mg and SO4 > HCO3 > Cl. The Oylat and Sızı springs have low Na and K contents but high Ca and HCO3 concentrations. According to AIH classification, these are Ca–SO4–HCO3 waters. Based on the results of δ18O, 2H and 3H isotope analyses, the thermal waters have a meteoric origin. The meteoric water infiltrates along fractures and faults, gets heated, and then returns to surface through hydrothermal conduits. Oylat waters do not have high reservoir temperatures. They are deep, circulating recharge waters from higher enhanced elevations. δ13CDIC values of the Main spring and Forest Management hot spring are −6.31 and −4.45‰, respectively, indicating that δ13C is derived from dissolution of limestones. The neutral pH thermal waters are about +18.7‰ in δ34S while the sulfate in the cold waters is about +17‰ (practically identical to the value for the neutral pH thermal waters). However, the G?z and Saadet springs (acid sulfate waters) have much lower δ34S values (~+4‰).  相似文献   

    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

    京公网安备 11010802026262号