首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Size-fractionated bacterial production, abundance and α- and β- glucosidase enzyme activities were studied with respect to changes in hydrography, total suspended matter (TSM), chlorophyll a, particulate organic carbon and nitrogen ratio (POC:PON), 1.5 M NaCl-soluble and 10 mM EDTA-soluble carbohydrates (Sal-PCHO and CPCHO) and transparent exopolymeric particles (TEP) in the surface waters from July 1999–2000 at a shallow coastal station in Dona Paula Bay, west coast of India. The bulk of the total bacterial production and glucosidase activity were associated with particles (75% and >80%, respectively). Total bacterial production was linearly correlated to chlorophyll a (r = 0.513; p < 0.05) whereas enzyme activity was significantly correlated to TSM (α-glucosidase: r = 0.721 (p < 0.001); β-glucosidase: r = 0.596 (p < 0.01)). Both α-glucosidase (r = 0.514; p < 0.05) and β-glucosidase enzymes (r = 0.598; p < 0.01) appeared to be involved in the degradation of CPCHO and Sal-PCHO, respectively. Changes in α-glucosidase/β-glucosidase ratios highlighted the varying composition of particulate organic matter. The bacterial uptake of 14C-labeled bacterial extracellular carbohydrate measured over 11 days showed a strong linear correlation between 14C-uptake and bacterial production using tritiated thymidine. The turnover rate of 14C-labeled carbohydrate-C was 0.52 d−1, higher than the estimated annual mean potential carbohydrate carbon turnover rate of 0.33 ± 0.2 d−1. Our study suggests that carbohydrates derived from sediments may serve as an important alternative carbon source sustaining the bacterial carbon demand in the surface waters of Dona Paula Bay.  相似文献   

2.
The distributions of DMS and its precursor dimethylsulfoniopropionate, in both dissolved (DMSPd) and particulate fractions (DMSPp) were determined in the seasurface microlayer and corresponding subsurface water of the Jiaozhou Bay, China and its adjacent area in May and August 2006. The concentrations of all these components showed a clear seasonal variation, with higher concentrations occurring in summer. This can be mainly attributed to the higher phytoplankton biomass observed in summer. Simultaneously, the enrichment extents of DMSPd and DMSPp in the microlayer also exhibited seasonal changes, with higher values in spring and lower ones in summer. Higher water temperature and stronger radiant intensity in summer can enhance their solubility and photochemical reaction in the microlayer water, reducing their enrichment factors (the ratio of concentration in the microlayer to that in the corresponding subsurface water). A statistically significant relationship was found between the microlayer and subsurface water concentrations of DMS, DMSP and chlorophyll a, demonstrating that the biogenic materials in the microlayer come primarily from the underlying water. Moreover, our data show that the concentrations of DMSPp and DMS were significantly correlated with the levels of chlorophyll a, indicating that phytoplankton biomass might play an important role in controlling the distributions of biogenic sulfurs in the study area. The ratios of DMS/chlorophyll a and DMSPp/chlorophyll a varied little from spring to summer, suggesting that there was no obvious change in the proportion of DMSP producers in the phytoplankton community. The mean sea-to-air flux of DMS from the study area was estimated to be 5.70 μmol/(m2·d), which highlights the effects of human impacts on DMS emission.  相似文献   

3.
The production of dimethylsulfide (DMS) and dimethylsulfoniopropionate (DMSP) by marine microalgae was investigated to elucidate more on the role of marine phytoplankton in ocean-atmosphere interactions in the global biogeochemical sulfur cycle.Axenic laboratory cultures of four marine microalgae–Isochrysis galbana 8701,Pavlova viridis,Platymonas sp.and Chlorella were tested for DMSP production and conversion into DMS.Among these four microalgae,Isochrysis galbana 8701 and Pavlova viridis are two species of Haptophyta,while Chlorella and Platymonas sp.belong to Chlorophyta.The results demonstrate that the four algae can produce various amounts of DMS(P),and their DMS(P) production was species specific.With similar cell size,more DMS was released by Haptophyta than that by Chlorophyta.DMS and dissolved DMSP (DMSPd) concentrations in algal cultures varied significantly during their life cycles.The highest release of DMS appeared in the senescent period for all the four algae.Variations in DMSP concentrations were in strong compliance with variations in algal cell densities during the growing period.A highly significant correlation was observed between the DMS and DMSPd concentrations in algal cultures,and there was a time lag for the variation trend of the DMS concentrations as compared with that of the DMSPd.The consistency of variation patterns of DMS and DMSPd implies that the DMSPd produced by phytoplankton cells has a marked effect on the production of DMS.In the present study,the authors’ results specify the significant contribution of the marine phytoplankton to DMS(P) production and the importance of biological control of DMS concentrations in oceanic water.  相似文献   

4.
The distributions of DMS and its precursor dimethylsulfoniopropionate, in both dissolved (DMSPd) and particulate fractions (DMSPp) were determined in the sea-surface microlayer and corresponding subsurface water of the Jiaozhou Bay, China and its adjacent area in May and August 2006. The concentrations of all these components showed a clear seasonal variation, with higher concentrations occurring in summer. This can be mainly attributed to the higher phytoplankton biomass observed in summer. Simultaneously, the enrichment extents of DMSPd and DMSPp in the microlayer also exhibited seasonal changes, with higher values in spring and lower ones in summer. Higher water temperature and stronger radiant intensity in summer can enhance their solubility and photochemical reaction in the microlayer water, reducing their enrichment factors (the ratio of concentration in the microlayer to that in the corresponding subsurface water). A statistically signi.cant relationship was found between the microlayer and subsurface water concentrations of DMS, DMSP and chlorophyll a, demonstrating that the biogenic materials in the microlayer come primarily from the underlying water. Moreover, our data show that the concentrations of DMSPp and DMS were signi.cantly correlated with the levels of chlorophyll a, indicating that phytoplankton biomass might play an important role in controlling the distributions of biogenic sulfurs in the study area. The ratios of DMS/chlorophyll a and DMSPp/chlorophyll a varied little from spring to summer, suggesting that there was no obvious change in the proportion of DMSP producers in the phytoplankton community. The mean sea-to-air .ux of DMS from the study area was estimated to be 5.70 μmol/(m2 ·d), which highlights the e.ects of human impacts on DMS emission.  相似文献   

5.
Solid-phase microextraction (SPME) is a simple, sensitive and less destructive method for the determination of dimethylsulfide (DMS) in seawater. Combined with detection by gas chromatography-mass spectrometry (GC-MS), the method had sufficient sensitivity (minimum detectable concentration of DMS was 0.05 nM), and practical levels of reproducibility (relative standard deviation ≤7%) and linearity (r 2 > 0.995) over a wide concentration range (0.5 to 910 nM). The protocol developed was applied to a Sagami Bay water sample to determine concentrations of DMS and DMSP, and in situ DMSP-lyase activity.  相似文献   

6.
Sixteen surface microlayer samples and corresponding subsurface water samples were collected in the western North Atlantic during April–May 2003 to study the distribution and cycling of dimethylsulfide (DMS) and dimethylsulfoniopropionate (DMSP) and the factors influencing them. In the surface microlayer, high concentrations of DMS appeared mostly in the samples containing high levels of chlorophyll a, and a significant correlation was found between DMS and chlorophyll a concentrations. In addition, microlayer DMS concentrations were correlated with microlayer DMSPd (dissolved) concentrations. DMSPd was found to be enriched in the microlayer with an average enrichment factor (EF) of 5.19. However, no microlayer enrichment of DMS was found for most samples collected. Interestingly, the DMS production rates in the microlayer were much higher than those in the subsurface water. Enhanced DMS production in the microlayer was likely due to the higher concentrations of DMSPd in the microlayer. A consistent pattern was observed in this study in which the concentrations of DMS, DMSPd, DMSPp (particulate) and chlorophyll a in the microlayer were closely related to their corresponding subsurface water concentrations, suggesting that these constituents in the microlayer were directly dependent on the transport from the bulk liquid below. Enhanced DMS production in the microlayer further reinforces the conclusion that the surface microlayer has greater biological activity relative to the underlying water.  相似文献   

7.
Vertical profiles of dimethylsulfide (DMS) and β-dimethylsulfoniopropionate, particulate (pDMSP) and dissolved (dDMSP), were measured biweekly in the upper 140 m of the Sargasso Sea (32°10′N, 64°30′W) during 1992 and 1993. DMS and pDMSP showed strong, but different, seasonal patterns; no distinct intra-annual pattern was observed for dDMSP. During winter, concentrations of DMS were generally less than 1 nmol l−1 at all depths, dDMSP was less than 3 nmol l−1 and pDMSP was less than 8 nmol l−1. In spring, concentrations of both dDMSP and pDMSP rose, on a few occasions up to 20 nmol l−1 in the dissolved pool and up to 27 nmol l−1 in the particulate pool. These increases, due to blooms of DMSP-containing phytoplankton, resulted in only minor increases in DMS concentrations (up to 4 nmol l−1). Throughout the summer, the concentrations of DMS continued to increase, reaching a maximum in August of 12 nmol l−1 (at 30 m depth). There was no concomitant summer increase in dDMSP or pDMSP. The differences among the seasonal patterns of DMS, dDMSP, and pDMSP suggest that the physical and biological processes involved in the cycling of DMS change with the seasons. There is a correlation between the concentration of DMS and temperature in this data set, as required by some of the climate feedback models that have been suggested for DMS. A full understanding of the underlying processes controlling DMS is required to determine if the temperature-DMS pattern is of significance in the context of global climate change.  相似文献   

8.
Multi-annual sedimentological observations on tidal-flat sediments were carried out in Hampyong Bay, southeastern Yellow Sea, to infer the budget of modern muddy sediments in the bay. Sedimentation rates over a four-year period show contrasting types of seasonal sedimentary cycles occurring in the tidal flats within the elongated bay. Both sides of the bay are largely sheltered from winter waves, resulting in surface mud deposition during winter and erosion during summer. In contrast, tidal flats along the head of the bay are influenced by winter waves, resulting in a reversed trend where erosion occurs during winter and deposition during summer. Tidal flats near the bay-mouth, however, show a sedimentary cycle disrupted by the construction of sea walls undergoing consistent erosion throughout the observational period. The shoreline artificially straightened seems to cause tidal currents to bypass the tidal flat and hence to be much stronger. These differences in sedimentary cycles suggest the critical importance of the orientation of tidal flats relative to the propagating direction (from N–NW) of the monsoon winter-storm waves on the tidal-flat sedimentation in the eastern coastal area of the Yellow Sea. The preliminary budget estimation for the tidal-flat mud suggests that the tidal flats in Hampyong Bay are subject to the slight but consistent erosion as a whole.  相似文献   

9.
10.
Seasonal dynamics of Zostera noltii was studied during 1984 in Arcachon Bay, France. In this Bay, Z. noltii colonizes 70 km2, i.e. approximately 50% of the total area, while Z. marina occupies only 4 km2. Densities and length of vegetative and generative shoots and above-ground and below-ground biomasses were monitored in four meadows which differed according to their location in the Bay, tidal level and sediment composition. Three of these meadows were homogeneous, well-established beds whilst the fourth was under colonization and patchy. Shoot densities and maximal below-ground biomass were lower in the inner silty seagrass bed than in the sandy meadows located in the centre of the Bay. Maximal above-ground biomasses were similar in the two population types. In the well-established beds, vegetative shoot densities, above-ground and below-ground biomasses showed a unimodal pattern with minima in winter (4000 to 9000 shoots·m−2, 40 to 80 g DW·m−2, and 40 to 60 g DW·m−2, respectively) and maxima in summer (11000 to 22000 shoots·m−2, 110 to 150 g DW·m−2, and 140 to 200 g DW·m−2, respectively). Reproductive shoots were observed from the beginning of June until the end of September, except in the colonizing bed where they persisted until December. Furthermore, in the latter, maximal reproductive shoot density was higher (2600 shoots·m−2) than in the established beds (650 to 960 shoots·m−2). The total production of Z. noltii in Arcachon Bay was estimated to approximately 35.6·106 kg DW·y−1 (19.4·106 kg DW·y−1 for above-ground parts and 16.2·106 kg DW·y−1 for below-ground parts).  相似文献   

11.
于2013年10~11月现场测定了东海中二甲基硫(DMS)及其前体物质二甲巯基丙酸内盐(DMSP,分为溶解态DMSPd和颗粒态DMSPp)的含量,研究其水平分布特征、DMSPp的粒径分布及DMSPd的降解速率,并对DMS的海-气交换通量进行了探讨。研究结果表明,表层海水中DMS、DMSPd和DMSPp的浓度平均值分别为(4.84±0.40)、(5.84±0.93)和(13.01±0.52)nmol·L-1。海水中DMSPd的降解速率在2.59~16.36nmol·L-1·d-1之间,平均值为(6.78±0.84)nmol·L-1·d-1。调查海域范围内,小型浮游植物(20μm)是DMSPp和叶绿素a(Chl a)重要贡献者。此外,秋季东海表层海水DMS的海-气交换通量为0.66~31.73μmol·m-2·d-1,平均值为(11.63±0.71)μmol·m-2·d-1。  相似文献   

12.
During the EPOS I expedition (leg 1, 1988) into the WeddellSea (Antarctica) the dimethylsulfoniopropionate (DMSP) contents of various ice-algal assemblages and phytoplankton populations in the open water and in the ice edge zones were investigated. The chlorophyll a content in the ice samples was 25–70 times higher than that of the open water column, and about 100–390 more than in the under-ice water column. The DMSP content in ice-algae was about 20–56 times higher than in the open water, and 107–245 than in the under-ice water. There was no strict (linear ) correlation between pigment content and DMSP concentration, although high chlorophyll values were always accompanied by high DMSP contents. The variability of DMSP data can be explained by variation in species composition. Especially high concentrations were observed in samples where Phaeocystis pouch-etii was present. In ice DMSP may have a twofold biological role: as an osmolyte and/or as a cryoprotectant (antifreeze).  相似文献   

13.
通过实验室培养研究了旋链角毛藻(Chaetoceros curvisetus Cleve)和小普林藻(Prymnesium parvum Carter)生长周期内培养液中二甲基硫(DMS)和二甲巯基丙酸(DMSP)的含量。结果表明,2种微藻均能释放DMS,但小普林藻单细胞释放的DMS浓度约是旋链角毛藻的500倍。在藻类生长的不同阶段,它们释放DMS和DMSP的能力存在较大差异,但2种藻类DMS大量释放均出现在衰亡期。同时研究了盐度对2种微藻DMS释放的影响,结果表明高盐度会促进小普林藻DMS和DMSP的释放,而对旋链角毛藻DMSP的释放未有显著影响。  相似文献   

14.
A combination of 2-year-long mooring-based measurements and snapshot conductivity–temperature–depth (CTD) observations at the continental slope off Spitsbergen (81°30′N, 31°00′E) is used to demonstrate a significant hydrographic seasonal signal in Atlantic Water (AW) that propagates along the Eurasian continental slope in the Arctic Ocean. At the mooring position this seasonal signal dominates, contributing up to 50% of the total variance. Annual temperature maximum in the upper ocean (above 215 m) is reached in mid-November, when the ocean in the area is normally covered by ice. Distinct division into ‘summer’ (warmer and saltier) and ‘winter’ (colder and fresher) AW types is revealed there. Estimated temperature difference between the ‘summer’ and ‘winter’ waters is 1.2 °C, which implies that the range of seasonal heat content variations is of the same order of magnitude as the mean local AW heat content, suggesting an important role of seasonal changes in the intensity of the upward heat flux from AW. Although the current meter observations are only 1-year long, they hint at a persistent, highly barotropic current with little or no seasonal signal attached.  相似文献   

15.
Weekly variations in total dimethylsulfoniopropionate (DMSPt) and dimethylsulfide (DMS) were investigated in relation to the phytoplankton assemblage from spring to fall 1994 at a coastal fixed station in the St. Lawrence Estuary. DMSPt and DMS concentrations showed a strong seasonality and were tightly coupled in time. Maximum concentrations of DMSPt and DMS were observed in July and August, during a period of warm water and low nutrient concentrations. Seasonal maxima of 365.4 nmol l−1 for DMSPt and 14.2 nmol l−1 for DMS in early August coincided with the presence of many phytoplankton species, such as Alexandrium tamarense, Dinophysis acuminata, Gymnodinium sp., Heterocapsa rotundata, Protoperidinium ovatum, Scrippsiella trochoidea, Chrysochromulina sp. (6 μm), Cryptomonas sp. (6 μm), a group of microflagellates smaller than 5 μm (mf < 5), many tintinnids, and Mesodinium rubrum. The abundance of mf < 5 followed the general trend of DMS concentrations. The temporal occurrence of high P. ovatum abundance and DMSPt concentrations suggests that this heterotrophic dinoflagellate can either synthesize DMSP or acquire it from DMSP-rich prey. The calculated sea-to-air DMS flux reached a maximum of 8.36 μmol −2 d−1 on August 1. The estimated annual emission from the St. Lawrence Estuary is 77.2 tons of biogenic sulfur to the atmosphere.  相似文献   

16.
The impact of in situ iron fertilisation on the production of particulate dimethylsulphoniopropionate (DMSPp) and its breakdown product dimethyl sulphide (DMS) was monitored during the SOLAS air-sea gas exchange experiment (SAGE). The experiment was conducted in the high nitrate, low chlorophyll (HNLC) waters of the sub-Antarctic Southern Ocean (46.7°S 172.5°E) to the south-east of New Zealand, during March-April, 2004. In addition to monitoring net changes in the standing stocks of DMSPp and DMS, a series of dilution experiments were used to determine the DMSPp production and consumption rates in relation to increased iron availability. In contrast to previous experiments in the Southern Ocean, DMS concentrations decreased over the course of the 15-d iron-fertilisation experiment, from an integrated volume-specific concentration in the mixed layer on day 0 of 0.78 nM (measured values 0.65-0.91 nM) to 0.46 nM (measured values 0.42-0.47 nM) by day 15, in parallel with the surrounding waters. DMSPp, chlorophyll a and the abundance of photosynthetic picoeukaryotes exhibited indiscernible or only moderate increases in response to the raised iron availability, despite an obvious physiological response by the phytoplankton. High specific growth rates of DMSPp, equivalent to 0.8-1.2 doublings d−1, occurred at the simulated 60% light level of the dilution experiments. Despite the high production rates, DMSPp accumulation was suppressed in part by microzooplankton grazers who consumed between 61% d−1 and 126% d−1 of the DMSPp production. Temporal trends in the rates of production and consumption illustrated a close coupling between the DMSP-producing phytoplankton and their microzooplankton grazers. Similar grazing and production rates were observed for the eukaryotic picophytoplankton that dominated the phytoplankton biomass, partial evidence that picoeukaryotes contributed a substantial proportion of the DMSP synthesis. These rates for DMSPp and picoeukaryotes were considerably higher than for chlorophyll a, indicating higher cycling rates of the DMSP-producing taxa than for the bulk phytoplankton community. When compared to the total phytoplankton community, there was no evidence of selection against the DMSP-containing phytoplankton by the microzooplankton grazers; the opposite appeared to be the case. SAGE demonstrated that increased iron availability in the HNLC waters of the Southern Ocean does not invariably lead to enhanced DMS sea-air flux. The potential suppression of DMSPp accumulation by grazers needs to be taken into account in future attempts to elevate DMS emission through in situ iron fertilisation and in understanding the hypothesised link between levels of Aeolian iron deposition in the Southern Ocean, DMS emission and global albedo.  相似文献   

17.
Variations in species diversity and abundance of polychaete taxocenes that occurred in 1980–1989 under different contamination levels of bottom sediments were studied in three areas of Peter the Great Bay. The most polluted area was shown to be the Golden Horn Inlet where contaminant contents in the bottom sediments exceed the threshold values of negative biota alterations. Amursky Bay is characterized by a moderate level of contamination, while Ussuriysky Bay has the lowest level of contamination. Pollutant contents vary considerably within the same areas and their separate patches are polluted differently. An integral index characterizing the contamination of bottom sediments is proposed. This index is an average grade of the rank value of contaminant contents in sediments. The index was used to compare the contamination level and data on polychaete species diversity and abundance. The highest species diversity of polychaetes is found in the least affected zones. Monotonous decrease of the species number, as well as decrease in the indices of diversity and evenness, is correlated with pollution level increases. Significant growth of the average polychaete biomass and polychaete density is observed in the case of an increase of contamination from low to moderate levels. Conversely, the biomass and abundance of polychaetes decline following an increase in contamination.  相似文献   

18.
The osmolyte dimethylsulphoniopropionate (DMSP) can be enzymatically cleaved to dimethylsulphide (DMS), acrylate and a proton. The enzyme involved in this reaction is dimethylpropiothetin dethiomethylase (DMSP lyase; enzyme classification number 4.4.1.3.). Although the importance of this reaction for the global sulphur cycle, the influence of DMS on atmospheric acidity and the possible effect on climate regulation have been widely recognised, our knowledge of DMSP lyases is limited to just a few studies. Activity measurements of DMSP lyases offer an important step towards a better understanding of the conditions under which DMS is produced. In the available published data somewhat similar methods have been used before, but a critical examination of the method limitations has not been reported. To encourage further research on this enzyme, we suggest and detail two protocols for measurements of DMSP lyase activity: An in vitro assay for crude cell extracts or purified enzyme and an in vivo method for whole cells, which we recently started to use. After addition of DMSP, samples incubated in a gas tight vial may produce DMS from enzymatic cleavage under suitable conditions, and a DMS production rate can be estimated from time-series measurements of DMS in the headspace of the vial. Headspace analysis of DMS is a useful and rapid technique to estimate and compare DMSP lyase activities from different sources. The relative rates of DMS production in the liquid and of the gas transfer between liquid and headspace, determine the rate of DMS production measured via headspace analysis. If DMS production in the liquid is higher than the rate of transfer, headspace measurements will not reflect the actual amount of DMS produced in the liquid. In this case, extracts have to be diluted to a level that ensures linearity between dilution factor and reduction of enzyme activity. Additionally, incubation volumes and vials should be selected to provide a high surface-to-volume ratio to ensure maximum flux of DMS from the aqueous phase into the headspace. The methods can be adapted to further investigate species- and strain-specific activities, biogeographical distribution, cellular location and biochemical properties of various DMSP lyases.  相似文献   

19.
Dissolved organic matter (DOM) composition and dynamics in temperate shallow coastal bays are not well described although these bays may be important as local sources of organic carbon to ocean waters and are often sites of economically-important fisheries and aquaculture. In this study surface water samples were collected on a monthly to bi-monthly basis over two years from a mid-Atlantic coastal bay (Chincoteague Bay, Virginia and Maryland, USA). Dissolved organic carbon (DOC) concentrations and light absorbance characteristics were measured on sterile-filtered water, and high-molecular weight (> 1 kDa) dissolved OM (DOM) was isolated to determine stable isotope composition and molecular-level characteristics. Our time series encompassed both a drought year (2002) and a year of above-average rainfall (2003). During the dry year, one of our sites developed a very intense bloom of the brown tide organism Aureococcus anophagefferens while during the wet year there were brown tide bloom events at both of our sampling sites. During early spring of the wet year, there were higher concentrations of > 1 kDa DOC; this fraction represented a larger proportion of overall DOC and appeared considerably more allochthonous. Based upon colored dissolved organic matter (CDOM) and high-molecular weight DOM analyses, the development of extensive phytoplankton blooms during our sampling period significantly altered the quality of the DOM. Throughout both years Chincoteague Bay had high DOC concentrations relative to values reported for the coastal ocean. This observation, in conjunction with the observed effects of phytoplankton blooms on DOM composition, indicates that Chincoteague Bay may be a significant local source of “recently-fixed” organic carbon to shelf waters. Estimating inputs of DOC from Chincoteague Bay to the Mid-Atlantic Bight suggests that shallow productive bays should be considered in studies of organic carbon on continental shelves.  相似文献   

20.
Qualitative and quantitative composition of meiobenthos was studied in Amursky Bay (Peter the Great Bay, the East Sea). Ten taxonomic groups were found, where nematodes were dominant. Density of meiobenthos in ground sediments of the Bay were not uniform, and the average density was measured at 126.4±62.3 ind. m-2. 56 species of nematodes were detected, and dominant species wereSabatieria palmaris, Paracanthonchus macrodon, Sphaerolaimus limosus, S. gracilis andOncholaimium ramosum. Five taxocenes of nematodes were allocated based on the results of cluster analysis and species domination according to density. Low diversity in species composition of nematodes was noted in the northwestern part of the Bay, which is a zone of desalination, and in the eastern part, which is exposed to household drains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号