首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Pure silver and silver/nickel composite particles were prepared by spray pyrolysis of aqueous solutions of AgNO3, and mixed salts of AgNO3 and Ni(NO3)2·6H2O, respectively. In the case of pure silver, reduction to metallic silver and subsequent sintering to highly spherical and dense particles took place immediately and almost simultaneously once favorable conditions for the former were imposed, irrespective of the nature of the carrier gas. For the composite particles, the high rates of reduction and sintering of the silver were still maintained, while crystallization of the silver, and the reduction and sintering of the nickel were considerably retarded, compared to the spray pyrolysis of each pure salt. Once the counterpart salt was added, the size of the composite particles increased compared to that of each pure metallic particles, but it was little affected by the furnace set temperature, the residence time and the molar ratio of the two precursor salts. Within single particles, an increase in either the temperature or the residence time caused segregation—silver in the shells and nickel in the cores—and improved the particles' surface smoothness and sphericity accordingly.  相似文献   

2.
Zhengang Liu  Jianzhi Wu 《Fuel》2010,89(2):510-42
Two types of pinewood chars, hydrothermal char (H300) and pyrolytic char (P700) from biomass-to-energy conversion were characterized and used as adsorbent for the copper removal from aqueous solution. The result showed that the pinewood underwent a deeper carbonization during pyrolysis process and more activated sites available and stable carbon-oxygen complex existed after hydrothermal treatment. Comparing with raw pinewood, hydrothermal treatment increased 95% total oxygen-containing groups (carboxylic, lactone and phenolic group) while 56% oxygen-containing groups decreased after pyrolysis process. SEM analysis indicated that both hydrothermal and pyrolytic processes developed rough surface with new cavities on the chars, and the BET surface area were 21 and 29 m2/g for H300 and P700, respectively. Although H300 had lower surface area, its adsorption capacity for copper was much higher than P700 since ion-exchange reaction was the predominant removal mechanism by H300, while physical adsorption dominated by P700. The adsorption data could be well described by Langmuir isotherm model for copper onto both H300 and P700.  相似文献   

3.
火焰喷雾热解法制备纳米晶镁铝尖晶石粉   总被引:1,自引:0,他引:1  
以硝酸镁和硝酸铝(均为分析纯)混合物(其中Mg与Al的摩尔比为1∶2)为溶质,不同体积比的蒸馏水和乙醇为溶剂(其体积比分别为3∶2,1∶1,2∶3),制备成Mg2 浓度分别为0.1 mol.L-1、0.3 mol.L-1和0.5 mol.L-1的前驱物溶液,置于密闭容器内,分别在不同的容器压力(0.1 MPa,0.2 MPa,0.3 MPa,0.4 MPa)下用火焰喷雾热解法合成纳米晶镁铝尖晶石,借助XRD、SEM和激光粒度分析仪研究了乙醇和水的体积比、溶液浓度和容器压力对合成镁铝尖晶石粉的产量和形貌的影响。研究结果表明:合成粉末的颗粒尺寸和晶粒尺寸都随乙醇和水比值的减小而增加,其晶粒尺寸随前驱物溶液浓度的增加先减小后增大,随容器压力的变化很小,但随着压力的增加,合成粉末的团聚体增多、增大,产量明显增大。综合考虑认为,本试验的最佳合成条件是前驱物溶液中Mg2 浓度0.3 mol.L-1,乙醇和水的体积比3∶2,容器压力0.3 MPa,此时得到的合成尖晶石粉末几乎都为球形,但粒度分布范围较宽。  相似文献   

4.
Niobium pentoxide (Nb2O5) is a polymorphic ceramic with semiconductor characteristics applied in various fields of study. In this work, the Nb2O5 synthesis by the spray pyrolysis route was compared to the hydrothermal technique. The obtained materials were characterized by N2 physisorption (BET-N2), average particle size distribution by dynamic light scattering (DLS), X-ray diffractometry (XRD), transmission electron microscopy (TEM), and X-ray fluorescence (XRF) spectroscopy. The material synthesized by the spray pyrolysis technique presented high specific area and pore volume, high crystallinity, homogeneity, and nanometric particles, thus representing a potential technique for the Nb2O5 synthesis.  相似文献   

5.
Silver iodide particles in the submicronic size domain were synthesized in the process of ultrasonic spray pyrolysis (USP) using aqueous solutions of thermodynamically stable silver iodide clusters as precursor. After the process of USP, the AgI particles were collected in water. In order to study influence of aging time on the morphological and structural properties of the AgI particles, ultra-filtration was employed to isolate solid material from solution. The scanning electron microscopy showed change from spherical to hexagonal/triangular shape and increase of average particle size of the AgI particles as a function of aging time, which is characteristic for the Ostwald ripening growth mechanism. The X-ray diffraction measurements revealed the presence of wurtzite hexagonal and zinc blende cubic AgI modifications whose abundance is also dependent on the aging time.  相似文献   

6.
SiCNYO nanopowders have been elaborated by a spray pyrolysis method from an organometallic precursor which is synthesized by two different routes. Fourier-transform infrared spectroscopy and solid state nuclear magnetic resonance were used to identify the silylation and the amminolysis mechanism applied for the synthesis of each precursor. The SEM micrographs of the each “as-pyrolysed” product revealed spherical SiCNYO nanopowders with a bimodal size distribution. A drop-to-particle and a gas to particle exchanges seem to be the two mechanisms at the origin of grains size distribution. The nature and the reactivity of the carrier gas used in the aerosol indicate a significant influence on the powder morphology. It was found also that evaporation rate of the as-prepared precursor may lead to prevent the enlarging of particles.  相似文献   

7.
Photoluminescence of highly structured ZnO layers comprising well-shaped hexagonal rods is presented. The ZnO rods (length 500-1,000 nm, diameter 100-300 nm) were grown in air onto a preheated soda-lime glass (SGL) or ITO/SGL substrate by low-cost chemical spray pyrolysis method using zinc chloride precursor solutions and growth temperatures in the range of 450-550°C. We report the effect of the variation in deposition parameters (substrate type, growth temperature, spray rate, solvent type) on the photoluminescence properties of the spray-deposited ZnO nanorods. A dominant near band edge (NBE) emission is observed at 300 K and at 10 K. High-resolution photoluminescence measurements at 10 K reveal fine structure of the NBE band with the dominant peaks related to the bound exciton transitions. It is found that all studied technological parameters affect the excitonic photoluminescence in ZnO nanorods.PACS: 78.55.Et, 81.15.Rs, 61.46.Km.  相似文献   

8.
Fabrication of high performance membrane filters requires that both the substrate and the filtering layer have low resistance to liquid flow. The thickness, uniform porosity and hydrophilic nature are the main responsible parameters. Due to the antimicrobial property of the material it is widely used in solid/liquid separation. In this study, the substrate was of quartz type and the additives (frit glass and zeolite) made the filters with glassy pore walls as the sintering temperature applied was above their fusion temperature. The coating layer produced by antimicrobial and superhydrophilic (contact angel 8°) borosilicate glass particles has spherical shapes and their size intervals are narrow (0.65-2.4 μm). A thin layer coating without any cracks on the surface pores of the substrate has been obtained successfully. The coating was achieved by filtration and used for different amounts of feed material through dead-end pressure filtration modes. Sintering temperature and duration times determine the structural integrity of the coating as well as the pore evaluation.  相似文献   

9.
Sodium borosilicate glass powders were produced by ultrasonic spray pyrolysis technique for three different reactor temperature gradients and the effect of the reactor temperature gradient on the microstructures of the powders produced was investigated. A three-zone ultrasonic spray pyrolysis system reactor in which the temperatures of each zone could be controlled separately was designed for this purpose. When the drying speed is high, early shell formation was observed in the aerosol droplets due to the difference of the drying speed between inner and outer parts and hollow powders were produced. In order to produce dense powder particles, shell formation on the aerosol droplet should be prevented, therefore drying speed should be decreased. The powders produced were glass-structured, spherical shaped and with smooth surfaces. The density of the hollow powder particle was 1.9 g/cm3 while the density of the dense particle was 2.5 g/cm3.  相似文献   

10.
Lowering the SOFC working temperature would also be greatly attractive, but low temperature working SOFCs require high-performance anodes. The cermet SOFC anodes, which are composed of nickel and samarium doped ceria, were prepared by spray pyrolysis (SP), because SP produces spherical particles with small size distributions. SP-derived particles of NiO, SDC, and NiO/SDC composite had a round shape and comprised nanometer-sized primary grains. The cermet anodes were prepared by using SP-derived NiO/SDC composite particles or mixing SP-derived NiO and SDC particles. The anode prepared with the composite particles showed higher SOFC cell performance than that with the mixed ones. The composite particles had high surface areas and a capsule-type form. The outer shell would be composed of SDC and the inner core was NiO. The capsule-type composite particles would depress aggregation of Ni or NiO during reduction from NiO to Ni metals, and this depression would enhance SOFC anode performance.  相似文献   

11.
《Ceramics International》2020,46(11):18656-18660
Hexagonal plate-like nanoparticles (NPs) of the layered perovskite La4Ti3O12 were fabricated using liquid-feed flame spray pyrolysis (LF-FSP) followed by subsequent heat-treatments. Their photocatalytic activity was evaluated using decolorization of methyl orange solutions under Uv irradiation. LF-FSP combusts metalloorganic precursor aerosols to produce mixtures of cubic simple perovskite (ABO3) phase and lanthanum oxycarbonate (La2O4·846C0.846) phase with very low agglomeration and average particle sizes (APSs) of 23 nm (as-produced NPs). Rietveld refinement of synchrotron XRD powder patterns verified that the simple perovskite in the as-produced NPs is LaTiO3 (originally cubic Pm-3m-type space group) and heat-treating gives NPs of the trigonal layered perovskite La4Ti3O12 (R-3-type space group). La4Ti3O12 NPs heat-treated at 1100 °C/3-6h/air exhibits hexagonal plate-like morphology and high crystallinity offering enhanced photocatalytic degradation of methyl orange solutions compared to the as-produced NPs. The LF-FSP approach to obtaining layered perovskite La4Ti3O12 NPs provides a simple route to photocatalytic materials in reasonable quantities.  相似文献   

12.
Sr2CeO4 phosphor particles were prepared by spray pyrolysis at various preparation temperatures. The effect of preparation temperatures on the morphology, crystal structure and photoluminescence characteristics of the post-treated Sr2CeO4 phosphor particles was studied. Phase pure Sr2CeO4 phosphor particles were not produced by spray pyrolysis without post-treatment. The optimum post-treatment temperature to produce the Sr2CeO4 phosphor particles with high photoluminescence intensity was 1,000 °C in spray pyrolysis. The spherical morphology of the as-prepared particles obtained at high preparation temperatures above 1,400 °C had maintained after post-treatment at 1,000 ‡C. The relative photoluminescence intensities of the Sr2CeO4 phosphor particles varied with the preparation temperatures in the spray pyrolysis. The as-prepared particles obtained by spray pyrolysis at preparation temperatures below 1,400 °C converted into phase pure Sr2CeO4 phosphor particles after post-treatment at 1,000 ‡C. The optimum preparation temperature of the as-prepared particles was 1,400 °C to produce the Sr2CeO4 phosphor particles with spherical shape and high photoluminescence intensity in the spray pyrolysis.  相似文献   

13.
《Ceramics International》2020,46(7):8567-8574
The growth of zinc oxide thin films with controlled nanostructures on the heat resistant dielectric substrates is important for the fabrication of gas sensors, transparent electric heating elements, pyroelectric electron emitters, and many other potential electronic and optoelectronic applications. The preferred substrate for many of these applications is alumina, but the production of uniform ZnO layers on alumina is hindered by the large lattice mismatch between ZnO and Al2O3 hexagonal crystal structures. Here, we systematically investigate the growth process of ZnO thin films on alumina substrates using the ultrasonic spray pyrolysis (USP) of zinc chloride solutions in ethanol and, for the first time, demonstrate the deposition of uniform layers on the alumina substrates appropriately seeded using magnetron sputtering prior to USP. On the pristine substrates, random nucleation of the isolated nanocrystallites results in uneven layers, and extending the growth process leads to the hierarchical growth of facetted ZnO nanorods and pyramids with weak physical attachments to the substrate surface. In similar conditions, USP deposition on the seeded substrates reproducibly results in continuous networks of densely packed ZnO crystallites intimately attached to the substrate surface with adjustable thickness and electrical conductance. These results are compared with those obtained for SnO2 in similar conditions. Regardless of its tetragonal crystal structure, SnO2 reproducibly forms even layers on the pristine alumina substrates.  相似文献   

14.
《Ceramics International》2016,42(12):13715-13722
Core-shell structured NiO@GDC powders with NiO cores and GDC shells were synthesized by ultrasonic spray pyrolysis (USP) with a four-zone furnace. The morphology of the as-synthesized powders can be modified by controlling parameters such as the precursor pH, carrier gas flow rate, and zone temperature. At high carrier gas flow rates, the as-synthesized core-shell structured NiO@GDC powders have raisin-like morphology with a rough surface; this is due to fast gas exhaustion and insufficient particle ordering. The core-shell structured Ni@GDC anode showed considerable electrochemical performance enhancement compared to the conventionally-mixed Ni-GDC anode. The polarization resistance (Rp) of conventionally-mixed Ni-GDC anodes increases gradually as a function of the operation time. Alternatively, the core-shell structured Ni@GDC anode synthesized by USP does not exhibit any significant performance degradation, even after 500 h of operation. This is the case because the rigid GDC ceramic shell in the core-shell structured Ni@GDC may restrain Ni aggregation.  相似文献   

15.
Carbon particles synthesized by acetylene pyrolysis in a porous graphite reactor have been investigated. The intimate chemical and physical structures of the particles were probed by proton nuclear magnetic resonance spectroscopy, infrared Fourier transform spectroscopy and X-ray diffraction. The analysis points towards a chemical structure composed of soluble low-mass aromatics surrounding small insoluble larger aromatic islands bridged by aliphatic groups. The diffraction profile indicates that the particles are mostly amorphous with small crystalline domains of ∼6.5 Å composed of a few stacked graphene layers. The properties of these particles are compared with these obtained with other types of production methods such as laser pyrolysis and combustion flames. The results are briefly discussed in the context of the evolution of infrared interstellar emitters. Possible uses of the reactor are proposed.  相似文献   

16.
Barium zirconate based solid solutions of various compositions become ionic and/or electronic conductors and they are potential candidates for numerous types of applications in the field of electroceramics. This work investigated application of ultrasonic spray pyrolysis method based on thermal decomposition of barium and zirconium nitrate solution for preparation of fine barium zirconate powders. The aerosols of nitrate solutions of 0.1, 0.01 and 0.001 M were thermally treated at 800, 1000 and 1200 °C. The prepared powders were composed of the spherical particles which sizes, from 90 to 500 nm, were mainly depended on the concentration of nitrate solution and less depended on the pyrolysis temperature. The particles consisted of the crystallites of 25–60 nm in size. Their sizes strongly depended on the pyrolysis temperature and to the lesser extend on the solution concentration.  相似文献   

17.
Samaria-doped ceria (SDC) nanoparticles were prepared by spray pyrolysis. The means sizes of the samaria-doped ceria nanoparticles were controlled from 21 to 150 nm by changing the calcination temperatures between 700 and 1200 °C. The pellets formed from the SDC particles calcined at temperatures between 700 and 1000 °C had similar grain sizes between 0.75 and 0.82 μm. However, pellet formed from the SDC particles calcined at a temperature of 1200 °C had large grain size of 1.22 μm. The pellet formed from the SDC particles calcined at a temperature of 1000 °C had slightly smaller resistance of grain-boundary than those of the pellets formed from the SDC particles calcined at temperatures between 700 and 900 °C. However, the pellet formed from the SDC particles calcined at a temperature of 1200 °C had low resistance of grain-boundary. The pellet formed from the SDC particles calcined at a temperature of 1200 °C had conductivity of 44.65 × 10?3 S cm?1 at a measuring temperature of 700 °C that more twice than those of the pellets formed from the SDC calcined below 1000 °C.  相似文献   

18.
SrAl2O4, SrAl2O4:Tb3+ and SrAl2O4:Eu3+:Eu2+ films were synthesized by means of the ultrasonic spray pyrolysis technique. These samples, characterized by X-Ray Diffraction, showed the monoclinic phase of the strontium aluminate. Images of the surface morphology of these films were obtained by SEM and the chemical composition was measured by EDS and XPS. The photoluminescence and cathodoluminescence characteristics of the films were studied as a function of the terbium and europium concentrations. The optimal PL emission intensities were reached at 8?at% for terbium doped films and 6?at% for europium doped samples. The CL emission spectra for europium doped films showed the typical bands of Eu3+ ions and also a broadband centered at 525?nm which is attributed to Eu2+ ions. XPS measurements confirm the presence of Eu3+ and Eu2+ in europium doped SrAl2O4 films, without having been subjected to a reducing atmosphere. Chromatic diagrams exhibited green color for SrAl2O4:Tb3+ films, red and yellow colors for SrAl2O4:Eu3+:Eu2+ films. The PL decay curves were also obtained: the averaged decay time was 2.7?ms for SrAl2O4:Tb3+ films and 1.9?ms for SrAl2O4:Eu3+ films. Similar results were obtained by the stretched exponential model.  相似文献   

19.
This study deals with pyrolysis of three agricultural wastes (corncob, straw and oreganum stalks) at 500 °C in a fluidized bed reactor. The yields of char, liquid and gas were quantified. Pyrolysis liquids produced were in two separate phases; aqueous phase and oil. Oil yields varied between 35 and 41%, depending on biomass type, whereas the yields of aqueous phases were almost similar, around 6%, for all feedstock. For characterization, oils were fractionated by water extraction into two fractions; water solubles and water unsolubles. Both aqueous phase and water-soluble fraction were analyzed by gas chromatography–mass spectrometry and high-performance liquid chromatography. In addition, water content and elemental analysis of the oils were determined. Chemical compositions of gas and char products relevant to fuel applications were determined.  相似文献   

20.
Spinel structure CoCr2O4 was synthesized by the non-conventional method flame spray pyrolysis (FSP) and the traditional route solid state reaction, where the optical properties were evaluated. The influences of FSP conditions as pressure of dispersion air and ceramic load of the solution over optical properties were evaluated using a 22 full factorial design with one replica. The final products were applied in ceramic glazes to evaluate pigmenting power. Powders were characterized by X ray diffraction (XRD), scanning electron microscopy (SEM), UV-vis-NIR spectroscopy and Colorimetry. Results show that ceramic pigments obtained by FSP have highest percent reflectance and brightness than solid state reaction powders; nevertheless, both pigments are adequate to ceramic application. Besides, experiments showed that ceramic load of the starting solution have a strong influence over particle properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号