首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Adsorption of water on α-Fe2O3 surfaces has been studied by FT-IR spectroscopy and heat flow microcalorimetry. Several different adsorbed forms have been observed. Their identification has been attempted on the basis of their chemical behaviour and of a discussion of the structures of the exposed crystal faces.  相似文献   

3.
4.
The vacancy distribution of oxygen and its dynamics directly affect the functional response of complex oxides and their potential applications. Dynamic control of the oxygen composition may provide the possibility to deterministically tune the physical properties and establish a comprehensive understanding of the structure–property relationship in such systems. Here, an oxygen‐vacancy‐induced topotactic transition from perovskite to brownmillerite and vice versa in epitaxial La0.7Sr0.3MnO3?δ thin films is identified by real‐time X‐ray diffraction. A novel intermediate phase with a noncentered crystal structure is observed for the first time during the topotactic phase conversion which indicates a distinctive transition route. Polarized neutron reflectometry confirms an oxygen‐deficient interfacial layer with drastically reduced nuclear scattering length density, further enabling a quantitative determination of the oxygen stoichiometry (La0.7Sr0.3MnO2.65) for the intermediate state. Associated physical properties of distinct topotactic phases (i.e., ferromagnetic metal and antiferromagnetic insulator) can be reversibly switched by an oxygen desorption/absorption cycling process. Importantly, a significant lowering of necessary conditions (temperatures below 100 °C and conversion time less than 30 min) for the oxygen reloading process is found. These results demonstrate the potential applications of defect engineering in the design of perovskite‐based functional materials.  相似文献   

5.
6.
To better understand the shape dependent property of binary nanostructure, magnetic silica/iron oxides (α-Fe2O3 and Fe3O4) nanocomposites in rodlike shape have been synthesized using β-FeOOH nanorods as the starting material. The silica layer was coated on the surface of β-FeOOH nanorods, which were prepared by hydrolyzing of FeCl3 under hydrothermal conditions. Silica/α-Fe2O3 nanorods were prepared by calcining silica/β-FeOOH nanorods, and magnetic silica/Fe3O4 nanorods were obtained after the reduction of silica/α-Fe2O3 nanorods in an inert atmosphere. The role of the silica layer during the phase transformation process was discussed. The magnetic properties of silica/iron oxides (α-Fe2O3 and Fe3O4) nanorods were investigated and the results revealed that silica/iron oxides nanorods showed higher magnetic saturation value compared with the reported data.  相似文献   

7.
The RaMsEs Group (Radioprotection et Mesures Environnementales) of the IPHC performs research and offers services mainly in the field of radioactivity measurements and sample analysis. This report will describe some of our recent experience using a semiautomatic evaporation system to prepare large area thin deposits for total α and β counting and gives experimental and simulated results for the autoabsorption coefficients.  相似文献   

8.
An attempt is made to calculate an efficiency function applicable to 4πβ-γ coincidence measurements as the first stage of evaluating the order of the polynomial of the fitting function. For this purpose, the β-ray energy spectra and self-absorptions of spherical particle sources are calculated by the Monte Carlo simulation under the continuous slowing down approximation. On the other hand, it is shown that three sets of absorption coefficients and partial intensity ratios corresponding to a β-ray group give analytically the self-absorption for the same particle sources. Finally, we show that the efficiency functions applicable to 59Fe and 134Cs are easily obtained by using the energy spectra or self-absorptions.  相似文献   

9.
The synthesis of the orthoferrite LaFeO3 using high-energy ball-milling of La2O3 and Fe3O4 or α-Fe2O3 oxides and subsequent thermal treatments of resulting powders was studied. The phase evolution during the mechanical treatment was analyzed by X-ray diffraction (XRD), differential thermal analysis (DTA) and scanning electron microscopy (SEM). Also, magnetic properties of the obtained materials were measured at room temperature by vibrating sample magnetometry (VSM). From 30 min of mechanochemical activation the gradual disappearance of reactants and the formation of LaFeO3 were observed. For both reactive mixtures the reaction was completed after 3 h of milling. Magnetic hysteresis loops of these mechanoactivated samples showed a significant ferromagnetic component in LaFeO3. This behavior was interpreted on the basis of a spin-canting effect induced by the mechanochemical treatment. Thermal treatments allowed the relaxation of the distorted structure, resulting in the formation of the conventional antiferromagnetic LaFeO3 phase.  相似文献   

10.
A comparison is made between the measured α/β phase fractions in Ti-6246 using X-ray diffraction (XRD) and electron microscopy. Image analysis of SEM and TEM images was compared to the phase fraction estimate obtained using electron backscattered diffraction, lab and high-energy synchrotron XRD. There was a good agreement between the electron microscopic and diffraction techniques, provided that the microstructural parameters of grain size and texture are estimated correctly when using quantitative Rietveld refinement.  相似文献   

11.
This study reports a novel forging process to fabricate bulk fine‐grained (grain size ≈ 1 µm) Ti–6Al–4V alloy, in which temperatures near the β transus (Tβ) and strain rates around 0.15 s?1 are used for the deformation. The formation of fine‐grained microstructure is mainly result from the deformation‐induced precipitation of α grains from the β matrix.  相似文献   

12.
The spinel phase compounds with the composition of LiMn2−δVδOy were prepared by solid reaction of the mixture of LiNO3·H2O, MnCO3 and NH4VO3 powders. Evolution of the crystalline phases of the samples versus the vanadium content was analyzed using X-ray diffraction (XRD) technique, EPR and FT-IR spectroscopes. Cubic spinel is the predominant phase in the powders under heat treatment at 550 °C for 5 h. The valence state of manganese ion changed from +4 to +3 with vanadium substitution for charge compensation. The vanadium substitution of manganese leads the decline in capacity and cyclic behavior of the powders. The electrochemical behaviors relating to the variation of structure corresponding to the vanadium substitution were discussed.  相似文献   

13.
Coupons of austenitic 304 stainless steel (γ) were transformed to approximately 90% martensite (α′) and 10% austenite by rolling at 77 K. Subsequently the reverse α′→γ transformation was instigated by heating the coupons to 680°C. The retransformation was monitored, in situ, by dilatometry and neutron Bragg edge diffraction (BED). Results from the two techniques show good agreement and suggest that the transformation kinetics are best described by two Avrami exponents, n=2.5 and n=0.2 respectively. A limited discussion of the lattice parameter evolution during the transformation is included. Possible mechanisms for growth dynamics and stress relaxation are discussed.  相似文献   

14.
In situ heating transmission electron microscopy (TEM) was used to investigate the initial stage of γ‐TiAl lamellae formation in an intermetallic Ti–45Al–7.5Nb alloy (in at.%). The material was heat treated and quenched in a non‐equilibrium state to consist mainly of supersaturated, ordered α2‐Ti3Al grains. Subsequently, specimens were annealed inside a TEM up to 750 °C. The in situ TEM study revealed that ultra‐fine γ‐TiAl laths precipitate in the α2‐matrix at ≈730 °C which exhibit the classical Blackburn orientation relationship, i.e. (0001)α2//(111)γ and [$11{\bar {2}}0$ ]α2//<110]γ. The microstructural development observed in the in situ TEM experiment is compared to results from conventional ex situ TEM studies. In order to investigate the precipitation behavior of the γ‐phase with a complementary method, in situ high energy X‐ray diffraction experiments were performed which confirmed the finding that γ‐laths start to precipitate at ≈730 °C from the supersaturated α2‐matrix.  相似文献   

15.
16.
Samples with a composition similar to the nickel-based superalloy Inconel alloy 718 were produced by electron beam melting of prealloyed powder and investigated with respect to type and composition of the strengthening precipitates. The matrix consists of γ grains orientated in nearly the same direction, almost like a single crystal. Coarse precipitates (<2 μm), mostly of the (Ti,Nb)(C,N,B) type with B1 structure, are aligned along the growth direction. TEM and APFIM investigations of the γ matrix revealed very fine γ″ precipitates of around 5–10 nm in size. Additionally, at small angle grain boundaries, coarser γ″ precipitates of 50–100 nm in size have been observed. The 0 01 γ//0 0 1 γ″ and {1 0 0} γ//{1 0 0} γ″ orientation relationship between γ and γ″, known from literature [M. Sundararaman, P. Mukhopadhyay, Mater. Charact. 31 (1993) 191–196], was confirmed. Some γ′ precipitates of 2–5 nm in size were observed by means of FIM.  相似文献   

17.
Knowledge of the machining parameters for titanium aluminides of the type γ-TiAl is essential for the acceptance and application of this new heat-resistant light-weight material for high performance components in automobile and aircraft engines. This work evaluates drilling, turning, sawing, milling, electroerosion, grinding, and high-pressure water-jetting of primary castings. The results indicate that there is a potential for each machining process, but a high quality of surface finish can only be achieved by some of the processes.  相似文献   

18.
The cooling rate and large undercooling significantly affect the fusion zone microstructure in pulsed GTAW weldment under the same heat input condition. The weld pool solidified at fast cooling rate about 139 °C/s superimposed a relative amount of undercooling has a desired higher γ content of about 37 vol.% without tradition nitrogen addition or post-weld heat treatment. The final structure of the pulsed weld metal at 7 °C plate consists of a great amount of desirable intra-granular austenite γ2 (IGA) inside the grain matrix, besides Widmannstätten austenite γ2 (W) and grain boundary austenite γ2 (GBA). It results in the weldment with an uniform microhardness distribution and a homogeneous mechanical property.  相似文献   

19.
The dislocation structures of an industrial single-crystal γ + γ′ two-phase alloy DD3 after tensile deformation from room temperature to 1273K were studied by transmission electron microscopy. The strength of this alloy decreased with an increase in the temperature, and showed a strength peak at 1033K. At room temperature, the dislocations shearing the γ′ particles were found to be 1/3<112> partial dislocations on the dodecahedral slip system <112>{111}. Some dislocation pairs on the cubic <110>{100} system that blocked the glide of dislocations were found at a medium temperature of 873K. As a result, dislocation bands were formed. Shearing of γ′ particles by 1/3<112> partial dislocations on the dodecahedral slip system <112>{111} was also found at this temperature. At the peak temperature of 1033K, because of the strong interaction between dislocations on the {111} and {100} planes, the extent of dislocation bands with high dislocation densities was extensive. The 1/3<112> partial dislocations on the dodecahedral slip system <112>{111} also existed. When the temperature reached the high temperature of 1133K, the range of dislocation bands was limited. The γ′ particles were sheared by <110> dislocation pairs on the octagonal <110>{111} system and the cubic <110>{100} system. At 1273K, the regular hexagonal dislocation networks were formed in the γ matrix and at the γ/γ′ interface. The Burgers vectors of the network were found to be b1 = 1/2[110], b2 = 1/2[1–10], b3 = [100], and the last one was formed by the reaction of b1 + b2 → b3. Dislocations shearing the γ′ particles were found to be <110> dislocation pairs on the octagonal system <110>{111} and cubic slip system <110>{100} at 1273K.  相似文献   

20.
We investigated the roles of vacancies and their clusters introduced in a Ti–20mass% Mo alloy by high-speed compression in the formation of aged ω-phase crystals. Specimens were deformed by a static compression mode and a high-speed compression mode, and were then aged. The relationships between morphology of aged ω-phase crystals and deformation modes are discussed along with the roles of vacancies and their clusters in the nucleation and growth of aged ω-phase crystals. Aged ω-phase crystals were found to be smaller but of higher density in a high-speed deformation specimen. These results suggest that vacancies and their clusters easily become nucleation sites of aged ω-phase crystals. Several aged ω-phase crystals in a high-speed deformation specimen were of string-like shape. High-resolution electron microscopy confirmed that the string-like crystals have the ω-phase crystal structure. One of the roles of vacancies of and their clusters introduced by high-speed deformation is considered to be relief of compressive stress, which is predicted to arise in the course of transformation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号