首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
在古生物学研究中,以X射线断层成像(Computed Tomography)为代表的三维无损成像技术可以在不破坏化石标本的前提下,同时获得标本外观形态和内部结构的信息,相比传统的可见光成像手段有着明显优势。为推动化石三维无损成像技术在国内古生物学领域的发展,本文系统介绍一种新型显微CT技术——三维X射线显微术(Three-Dimensional X-ray Microscopy)。与基于几何放大和吸收衬度成像的传统显微CT技术相比,该技术有若干优势:(1)将同步辐射X射线显微断层成像的光学成像系统引入基于实验室X射线源的显微CT系统中,在几何放大的基础上增加了光学放大,优化了传统显微CT的系统架构,弥补了传统显微CT单纯依靠几何放大的不足,提高了空间分辨率;(2)采用可移动的X射线源和优化的光学成像系统,实现了低能X射线相位衬度成像,可以三维重构传统显微CT技术无法有效探测的、低吸收衬度的化石标本;(3)基于新的成像架构和成像算法,实现了厘米-分米级较大标本内部"感兴趣区域"(Region of Interest)精确导航和局部高分辨率(微米-亚微米空间分辨)成像;(4)可以实现小型扁平标本(宽厚比4,宽10cm)高效率、高分辨率成像和长条形微体标本长轴方向自动分段无缝拼接的微米至亚微米级高分辨率重建,弥补了传统工业显微CT针对小型扁平标本和长条形微体标本高分辨成像效果不佳的缺陷。这些优势使得基于实验室X射线源的显微CT成像技术可以获得接近同步辐射X射线源的成像质量,从而有效推动化石生物学研究。  相似文献   

2.
近年来,各种X射线三维无损成像技术在古生物学领域的应用越来越广泛。但是,不同的X射线三维无损成像技术针对不同保存类型和尺寸的化石标本在成像效果上各有利弊。本文以埃迪卡拉纪陡山沱组磷酸盐化的动物胚胎化石为研究对象,将目前应用最广的两种X射线三维无损成像方法,即基于实验室X光源的吸收衬度显微断层成像技术和基于同步辐射光源的相位衬度显微断层成像技术进行了对比分析。通过对两种技术的原理、效率、空间分辨率和图像衬度的对比,认为基于同步辐射光源的相位衬度显微断层成像技术是目前对于均一矿化的微体化石最佳的三维无损成像解决方案。  相似文献   

3.
基因表达产物蛋白质的亚细胞定位是解析基因生物学功能的重要证据之一。近年来出现的超分辨率光学成像技术已成功应用于人类和动物细胞中,预示着显微成像技术继激光共聚焦技术后的又一重要进步。由于植物细胞的特殊性和成像技术的研发取向,超分辨率光学成像技术在植物细胞蛋白质亚细胞定位的应用尚未见报道。该研究利用Delta Vision OMX显微镜技术,克服了叶绿体基粒中叶绿素自发荧光与融合蛋白荧光不易区分的缺陷,解决了受分辨率局限无法将植物细胞中蛋白质在亚细胞器内可视化精确定位的技术难题,成功地将植物蔗糖合成酶Zm SUS-SH1定位在烟草表皮细胞叶绿体基粒周围。该研究同时建立了一套基于撕片制片法的简便OMX显微镜制片方法,并针对OMX显微成像技术在植物细胞中蛋白质亚细胞定位的应用进行了讨论。  相似文献   

4.
几种超分辨率荧光显微技术的原理和近期进展   总被引:1,自引:0,他引:1  
在生命科学领域,人们常常需要在细胞内精确定位特定的蛋白质以研究其位置与功能的关系.多年来,宽场/共聚焦荧光显微镜的分辨率受限于光的阿贝/瑞利极限,不能分辨出200 nm以下的结构.近年来,随着新的荧光探针和成像理论的出现,研究者开发了多种实现超出普通共聚焦显微镜分辨率的三维超分辨率成像方法.主要介绍这些方法的原理、近期进展和发展趋势.介绍了光源的点扩散函数(point spread function, PSF)的概念和传统分辨率的定义,阐述了提高xy平面分辨率的方法.通过介绍单分子荧光成像技术,引入了单分子成像定位精度的概念,介绍了基于单分子成像的超分辨率显微成像方法,包括光激活定位显微技术(photoactivated localization microscopy, PALM)和随机光学重构显微技术(stochastic optical reconstruction microscopy, STORM).介绍了两大类通过改造光源的点扩散函数来提高成像分辨率的方法,分别是受激发射损耗显微技术(stimulated emission depletion, STED)和饱和结构照明显微技术(saturated structure illumination microscopy, SSIM).比较了不同的z轴提取信息的方法,并阐述了这些方法与xy平面上的超分辨率显微成像技术相结合所得到的各种三维超分辨率显微成像技术的优劣.探讨了目前超分辨率显微成像的发展极限和方向.  相似文献   

5.
化石研究的新技术──激光扫描共聚焦显微系统   总被引:2,自引:1,他引:2  
激光扫描共聚焦显微技术的根本特性在于任何时候都将照明光与探测到物体表面的光限制在物体某一个相同点上。如果这个点非常小又在极小衍射范围内,那么激光扫描共聚焦成像系统的分辨率要比任何传统显微镜高许多。通过变换焦距,可做一系列虚拟断层切面。利用这个特点,对那些用常规手段无法进行切片磨面的微体化石采用激光扫描共聚焦新技术进行研究,获得了对小壳化石、昆虫、孢粉等化石研究的新成果。  相似文献   

6.
梁悦  张志飞 《古生物学报》2018,57(2):202-211
随着国家对基础研究的日趋重视,我国的古生物学,包括早期生命和寒武纪大爆发研究取得了长足的进步,研究手段和仪器设备日益改善和提高,例如扫描电子显微镜(SEM)和X射线显微断层成像技术(Micro-CT)的使用已经十分广泛。本研究以我国滇东地区寒武纪澄江化石库和乌龙菁组关山生物群特异保存的腕足动物化石为例,运用高性能微区X射线荧光光谱仪对化石标本和围岩的成分进行了定性和半定量分析。由于X射线有一定的穿透能力,且生物体与围岩的组成元素不同,因此对标本的定性分析可快速清晰地显示出某些生物体在光学显微镜下未显示出的生物解剖结构;对化石中化学元素(Na-U)和化合物的半定量分析数据可大致揭示澄江生物群与关山生物群沉积矿物元素的区别,并且筛选出更适合用于高精度元素分析的标本。微区X射线荧光光谱仪在测试和扫描前对样品普遍不用进行前期处理,可用于样品表面扫描和微区分析,操作快捷、有效,加之其较大的样品台空间,是一种先进的高灵敏度、非破坏性的元素分析手段,能为对比研究诸如澄江生物群与关山生物群等不同时代生物群的特异埋藏条件和沉积环境提供新的信息。  相似文献   

7.
新元古代陡山沱期瓮安生物群研究概况   总被引:12,自引:1,他引:11  
近年来 ,在中国贵州省中部瓮安磷矿的震旦系陡山沱组磷块岩中发现了一个重要的新元古代化石生物群——瓮安生物群。自 1 986年至今 ,我国古生物学者相继在国内外重要刊物上发表了有关该化石生物群的论文 2 0余篇。该化石生物群主要包括底栖的多细胞藻类、蓝藻和细菌化石 ;浮游的大型带刺疑源类化石及一些可疑的动物化石。描述的属种已超过 50个 ,虽然其中部分动物化石的亲缘关系值得再深入的研究 ,但这个在磷块岩中立体保存且属种丰富的化石生物群将为新元古代生物多样性和早期生命多细胞化的研究提供极有价值的化石资料。  相似文献   

8.
激光扫描共聚焦显微镜(LSCM)及其生物学应用   总被引:5,自引:0,他引:5  
激光扫描共聚焦显微镜(LSCM)有效地排除了非焦平面信息,提高了分辨率及对比度,使图像更为精确清晰;与计算机及相应的软件技术组合,LSCM 实现了连续光学切片,广泛应用于生物三维结构重组及动态分析。目前,激光共聚焦显微技术已成功应用于生物芯片技术、激光显微操作系统、细胞骨架研究、生理生化及胚胎学研究、基因定位等领域。多光子技术的发展,进一步改善了LSCM 成像清晰度,拓宽了LSCM 在生物学领域中的应用。本文叙述了LSCM 的基本原理及其在生物学研究中的应用。  相似文献   

9.
近年来,荧光成像技术发展迅速,其成像系统通常为目前最先进的分析检测仪器之一的激光共聚焦显微镜,荧光探针是荧光成像技术的核心之一。作为新兴光学成像技术,荧光成像技术在生命科学领域中应用广泛,可用于蛋白质及金属离子检测,肿瘤疾病的诊断,并为药物新剂型的研究提供了新思路。  相似文献   

10.
共聚焦显微技术简介   总被引:5,自引:0,他引:5  
尚忠林 《生物学通报》2001,36(12):33-35
共聚焦显微镜在生物学研究中得到广泛应用,共聚焦显微技术按照显微镜构造原理的不同分成激光扫描共聚焦和数字共聚焦显微技术两种,共聚焦技术具有成像清晰,获得三维图像,进行多标记观察,活细胞内动态生理反应的实时观察记录,定性定量分析等优势,与共聚焦显微技术相关的技术有荧光染料的选择,荧光指示剂装载以及图像数据处理等。  相似文献   

11.
心肌细胞钙瞬变和细胞收缩的激光共聚焦成像研究   总被引:4,自引:0,他引:4  
目的:游离钙离子参与机体的多种重要生理功能。本研究着重探讨如何利用激光共聚焦显微镜线扫描成像技术同时记录正常情况下心肌细胞的钙瞬变以及由此引起的细胞收缩过程。方法与结果:本研究以分离的心室肌细胞为对象,通过局部场刺激诱发细胞的钙瞬变和收缩,同时配合使用激光共聚焦显微镜成像系统,以线扫描方式记录实验结果。结果表明,钙瞬变先于细胞收缩发生(约早31ms),而收缩最大处远落后于钙瞬变峰值发生处(约慢346ms)。结论:激光共聚焦显微镜线扫描成像技术具有较好的时问分辨率和空间分辨率,其实验结果直观、明确、可靠,是较理想的研究钙瞬变和细胞收缩的光学记录方法。  相似文献   

12.
激光扫描共聚焦显微镜在孢粉研究中的应用   总被引:1,自引:0,他引:1  
在MRC1000型激光扫描共聚焦显微镜下,观察具有自发荧光的孢子、花粉、沟鞭藻以及疑源类等不同时代的化石标本,发现现代和第四纪孢粉具有较强的自发荧光,古生代的孢子自发荧光强度最弱。后者很难聚焦成清晰的二维投影图像。在观察孢粉样品过程中,选择合适的激光波长及激光扫描强度是关键的技术问题。一般以氪、氩离子激发为效果最佳,以波长488,568,647nm最合适。  相似文献   

13.
《昆虫知识》2007,44(4):I0006-I0006
UV-C光学共聚焦显微图像系统集成了光学和数字图像分析技术,特别适用于采集非平面样品(高度变化范围超过了显微镜景深范围)的图像,它彻底解决了传统光学显微镜成像时高倍数与大景深不能共存的问题,使样品的不同高低部位都能清晰成像,可以获得像电镜图像一样的巨大景深和精致的细节,  相似文献   

14.
《昆虫知识》2007,44(1):I0002-I0002
UV-C光学共聚焦显微图像系统集成了光学和数字图象分析技术,特别适用于采集非平面样品(高度变化范围超过了显微镜景深范围)的图象,它彻底解决了传统光学显微镜成像时高倍数与大景深不能共存的问题,使样品的不同高低部位都能清晰成像,  相似文献   

15.
《动物分类学报》2006,31(4):I0012-I0012
UV-C光学共聚焦昱微图像系统集成了光学和数字图象分析技术,特别适用于采集非平面样品(高度变化范围超过了显微镜景深范围)的图象,它彻底解决了传统光学显微镜成像时高倍数与大景深不能共存的问题,使样品的不同高低部位都能清晰成像,可以获得像电镜图像一样的巨大景深和精致的细节,  相似文献   

16.
膨胀显微成像技术(expansion microscopy,ExM)是一种新型超分辨成像技术。该技术借助可膨胀水凝胶均匀地物理放大生物样本,在常规光学成像条件下实现超分辨成像。ExM适用于细胞、组织切片等多种类型生物样本。蛋白质、核酸、脂质等生物大分子均可借助ExM进行超分辨成像。ExM可与共聚焦显微镜、光片显微镜、超高分辨显微镜联合使用,进一步提高成像分辨率。近年来,多种从基础ExM拓展而来的衍生技术进一步促进了该技术的实际应用。本文综述了ExM及其衍生技术的基本原理、ExM与不同成像技术联用的研究进展及ExM在不同类型生物样本中的应用进展,并对ExM技术的发展前景做出展望。  相似文献   

17.
目的:应用激光共聚焦显微镜检测活细胞内荧光物质含量.方法:传代培养长期低剂量砷诱导的抗砷细胞,用荧光染料Rhodamine-123对细胞染色30min,实验组与维拉帕米(Verapamil)共同孵育,对照组为单加Rhodamine-123的抗砷细胞.应用激光共聚焦显微镜采集Rhodamine-123的荧光图像动态序列,并且记录不同时间段的细胞内荧光强度.结果:实验组细胞染色12h,24h,36h,48h,60h后,荧光强度依次为(51.567±0.7572)、(46.533±0.7095)、(39.557±0.601)、(38.6±0.6245)和(38.505±0.718),明显高于同时间段对照组的荧光强度,差异均有显著性(P<0.01).结论:应用激光共聚焦显微成像技术能进行活细胞水平荧光物质实时定量检测.  相似文献   

18.
目的:探讨应用基于ICCD的超高灵敏度荧光显微成像系统研究光敏剂细胞内分布的可行性。方法:传代培养内皮细胞、食管癌细胞和肺癌细胞,将不同浓度血卟啉单甲醚(HMME)与细胞共同孵育不同时间。采用荧光显微镜及ICCD组成的荧光显微成像系统采集不同浓度及不同孵育时间条件下HMME的荧光图像,并采用计算机图像处理技术进行图像增强、滤波后计算其细胞浆与细胞核的平均荧光强度比值。同时应用激光共聚焦显微镜图像采集进行对比。结果:HMME浓度为5μg/ml时,荧光显微镜采集到HMME的荧光图像;HMME浓度升高到160μg/ml,激光共聚焦显微镜获得HMME的荧光图像。两组图像的特点都为胞浆中荧光强度较高,细胞核区荧光较弱;细胞浆与细胞核的比值约为2~3:1。结论:荧光显微镜和ICCD采集细胞内光敏剂的荧光图像灵敏度高,方法可靠、实用。HMME较多分布在细胞质中,细胞核吸收较少。  相似文献   

19.
双光子激发荧光显微是一种非线性光学显微技术,它结合了激光扫描共聚焦显微镜和双光子激发技术,具有高时空分辨率、高信噪比和固有的三维层析分辨能力等优点。介绍了双光子显微镜的软硬件组成和技术参数,样品制备方法,双光子图像采集的常用操作规程,日常维护和仪器管理等方面。旨在为双光子仪器的使用者与管理者提供参考,使之更好地服务于教学与科研。  相似文献   

20.
随机光学重建显微镜(stochastic optical reconstruction microscopy,STORM)技术和受激发射损耗(stimulated emission depletion,STED)显微镜技术是近年来发展迅速的两种超分辨率荧光显微镜技术。这两种技术均提供超越传统荧光显微镜分辨率成像的功能,具有多色显像,三维成像以及活细胞内成像的潜力。在这篇综述中,我们关注两种技术荧光控制、激光强度等技术参数设定,同时结合样品制备、图像采集与处理等流程优化对比两者在分辨率、图像采集时间及具体应用中的优劣。STORM可获得更高的三维分辨率,但可能需要更长的图像采集时间。STED需要较高损耗光强度,却能在图像采集后立即生成超分辨率图像,不需要额外图像数据处理。最终,选择STORM和STED不仅取决于技术的具体应用,还取决于操作者优化各环节技术参数的能力,从而决定图像质量。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号