首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
基于SIMA法,采用冷轧+半固态热处理工艺制备出6061铝合金半固态坯料。研究了半固态加热温度和保温时间对6061铝合金半固态坯料显微组织的影响。结果表明:随半固态加热温度的升高,α-Al固相颗粒的球形率增大,液相率升高;保温时间在0~15 min内,随保温时间的延长,α-Al固相颗粒越圆整、分布越均匀,液相率越高;当保温时间超过15 min后,α-Al固相颗粒尺寸逐渐增大,颗粒有簇聚的趋势,而液相率变化不明显;优化的加热工艺参数为630℃保温15 min,可获得6061铝合金半固态坯料理想的显微组织。  相似文献   

2.
《铸造技术》2016,(4):701-705
利用应变诱发熔化激活法(SIMA)制备了7075铝合金半固态坯料。研究了半固态加热温度与保温时间对7075铝合金半固态坯料显微组织及压缩性能的影响。结果表明:半固态等温温度越高,球形率越好,液相率越高,初生α-Al固相颗粒的尺寸呈先降后升的趋势,而坯料的抗压强度则呈与之相反的趋势,等温温度595~610℃时达到理想状态;随着保温时间的延长,初生α-Al固相颗粒的球形率越好,颗粒尺寸逐渐增大,液相率无明显变化,而坯料的抗压强度呈先升高后略微下降的趋势,保温时间15~30 min时达到理想状态;在595℃保温30 min时,获得的7075铝合金半固态坯料的初生固相颗粒均匀、细小、圆整,抗压强度可达426.82 MPa。  相似文献   

3.
研究等温热处理温度和保温时间对ZC61-0.3Cr镁合金半固态组织演变的影响。结果表明:在等温热处理过程中,ZC61-0.3Cr合金中的原始树枝晶组织能够转变为半固态非枝晶组织,得到均匀、圆整的球状颗粒。随着保温温度的升高,合金中的原始树枝晶组织经过初始粗化、组织分离和球化演变成半固态非枝晶组织;随着保温时间的延长,晶界处的(α-Mg+MgZn2+CuMgZn)共晶组织优先熔化,合金中的大块状组织逐渐演变为球状组织;但是,保温温度过高或保温时间过长,都会引起球状颗粒的粗化长大。在粗化长大过程中,合并长大机制和Ostwald熟化机制同时存在,共同影响固相颗粒的形貌和尺寸大小。ZC61-0.3Cr镁合金半固态成形所需的最佳工艺条件为(585℃, 30 min);此条件下,其颗粒平均尺寸、形状因子和固相率分别为43μm、1.4和51%。  相似文献   

4.
研究了半同态等温热处理制备非枝晶组织ZL104铝合金的可行性以及保温温度和时间对合金半固态等温热处理组织的影响.结果表明,通过合适的半固态等温热处理工艺制备非枝品球状组织ZL104铝合金是可能的.在580℃保温下随着保温时间从30 min延长到120 min或在120 min保温下随着从570 oC保温提高到580℃,合金半固态组织巾未熔初生相颗粒的尺寸减小,其球状化趋势逐渐变得更明显.在本文条件下,ZL104合金最佳的半固态等温热处理工艺为580℃×120 min,通过该工艺合金可以获得液相含量为49%和未熔固相颗粒尺寸为115μm的非枝品球状组织,能够满足后续半固态成形的需要.  相似文献   

5.
《塑性工程学报》2016,(5):160-167
基于形变诱导熔化激活法(SIMA),采用高压扭转替代传统SIMA中的冷、热塑性变形,制备了具有近球状、细小、均匀颗粒的7A60铝合金半固态坯料;研究了压扭圈数、半固态处理温度和保温时间对半固态坯料微观组织的影响,并通过SEM和能谱线扫描分析了半固态处理温度和保温时间对主要合金元素分布的影响规律。研究结果表明,压扭4圈~6圈,等温温度580℃~600℃,保温20min,可以制备出理想的7A60半固态坯料;随着半固态处理温度的升高或保温时间的延长,基体元素Al和主要强化元素Mg、Zn趋于均匀分布,Cu则逐渐向晶界偏聚;在晶界处偏析的低熔点相主要由Cu构成。  相似文献   

6.
研究了等温处理工艺对触变压铸Al-30Si合金(加入1wt%的磷盐变质处理)组织和力学性能的影响.结果表明,触变压铸组织中,初生硅的形貌较为圆整,针状的共晶硅消失.在高压下快速冷却,αAl来不及长大,颗粒大小分布是弥散的;在固相率较高共晶组织未全部熔化时,组织中的αAl以固相保留,形态为球状或近球状.在620℃,抗拉强度随保温时间的延长而增加.保温时间从80min增加到120min时抗拉强度从206MPa增大到220MPa,布氏硬度从92 HB减小到84 HB;在同一保温时间(100 min)时,保温温度升高,抗拉强度先增大后减小,最大值为213MPa(620℃).保温时间的增加或保温温度的升高,布氏硬度都呈现出减小的趋势.  相似文献   

7.
研究了等温热处理对AZ91D+Ce镁合金半固态组织的影响,获得了较理想的球状或类球状晶粒组织。结果表明,在等温热处理的过程中,加入稀土Ce会阻碍原子向固相粒子聚集和结合,抑制固相颗粒的长大,形成细小圆整的半固态组织。随等温热处理温度的升高,原子活动能力增强,熔化速度加快,液相量增加,固相颗粒尺寸先减小后增大。在等温初始阶段,熔化对初生固相颗粒尺寸起决定作用,使得颗粒尺寸减小。但是,随等温时间的进一步增加,由于合并粗化和Ostwald熟化的作用,固相颗粒开始长大。  相似文献   

8.
半固态等温热处理对铸态AZ80镁合金组织的影响   总被引:1,自引:0,他引:1  
研究了等温热处理温度和保温时间对铸态AZ80镁合金半固态组织演变的影响.研究结果表明:在热处理过程中,随保温时间的延长,初生α相演变过程是,首先由大部分粗大的树枝晶二次枝晶臂合并成为大块状,而后大块状晶粒在晶粒内部及晶界处液相和固液界面的曲率共同作用下熔化分离为小块状,继续保温则圆整化;保温时间相同,等温处理的温度越高,枝晶演变过程越快,保温温度越高或保温时间越长,球状晶粒也容易趋于长大.AZ80镁合金半固态成形所需的最佳工艺条件为加热温度570℃左右,保温时间30min.  相似文献   

9.
通过半固态等温热处理,研究了重熔温度和保温时间对铸造ZC63镁合金半固态组织演变的影响。结果表明:半固态等温热处理能够将ZC63合金中的枝晶组织转变为球状组织,并可获得更加细小、分布均匀的球状颗粒;重熔温度和保温时间对非枝晶组织演变有着重要的影响,提高保温温度或延长保温时间,可加快原始铸锭重熔进程及组织形态的优化,保温温度过高或保温时间过长,试样会发生严重变形,同时球状颗粒易于粗化和长大;非枝晶组织演变是在熔化和结晶的动态变化中完成,主要的演变机制是在等温热处理过程中晶界处的共晶组织向基体溶解,原始组织的粗化、分离、球化以及球状颗粒的合并与长大。ZC63合金半固态触变成形最适合的等温热处理工艺是600℃×30 min。  相似文献   

10.
研究了半固态等温处理工艺对金属型AM60B的组织和初生相尺寸及形态的影响.结果表明,在半固态等温热处理过程中,网状分布的共晶组织先发生熔化;随着等温时间的延长,α相发生熔化分离;等温时间过长时,球状颗粒有长大、合并的趋势,等温温度越高,晶粒间的合并现象越严重.结果表明,在595 ℃时保温60~75 min可以获得较好的球状非枝晶组织;经过两步法短时的高温保温,非枝晶转变进程加快,可以得到较细小均匀的非枝晶组织.  相似文献   

11.
通过半固态等温热处理,研究了重熔温度和保温时间对铸造ZC63镁合金半固态组织演变的影响。结果表明:半固态等温热处理能够将ZC63合金中的枝晶组织转变为球状组织,并可获得更加细小、分布均匀的球状颗粒;重熔温度和保温时间对非枝晶组织演变有着重要的影响,提高保温温度或延长保温时间,可加快原始铸锭重熔进程及组织形态的优化,保温温度过高或保温时间过长,试样会发生严重变形,同时球状颗粒易于粗化和长大;非枝晶组织演变是在熔化和结晶的动态变化中完成,主要的演变机制是在等温热处理过程中晶界处的共晶组织向基体溶解,原始组织的粗化、分离、球化以及球状颗粒的合并与长大。ZC63合金半固态触变成形最适合的等温热处理工艺是600℃×30 min。  相似文献   

12.
研究了半固态等温处理温度和时间对挤压AZ91镁合金微观组织演变的影响。挤压AZ91镁合金的微观组织为流线带状组织,由分布于其间的细小再结晶α-Mg等轴晶组成。在半固态温度区间进行等温处理时,合金内的低熔点相及溶质元素富集区优先开始熔化,然后沿着晶界渗透,形成液相包围固相晶粒的半固态组织。随着等温温度的升高,固相晶粒熔化分离的速度加快。在等温温度为560℃时,随着等温时间的延长,液相不断增加,固相晶粒分离并不断趋于圆整。等温处理20 min后,合金达到了固/液平衡状态,Ostwald熟化机制开始明显,晶粒长大成为主要机制。挤压AZ91镁合金较佳的等温处理工艺为等温温度560℃,等温时间20~30 min。  相似文献   

13.
采用DSC测试、热镦粗实验、半固态等温处理实验、金相显微镜观察以及Image Pro Plus图像处理软件,研究了等温压缩温度、压缩量和半固态等温处理的温度、保温时间对再结晶重熔(RAP)法制备AlSi7Mg铝合金半固态坯料微观组织的影响.结果表明:等温压缩过程中温度对半固态坯料微观组织的影响不明显,而等温压缩变形量的增大有利于细化半固态坯料微观组织,最优热镦粗参数为温度240℃,变形量40%;半固态等温处理过程中,随保温温度升高,微观组织固相晶粒的尺寸逐渐增大,而随着保温时间延长,半固态组织中固相颗粒的尺寸先缓慢长大再迅速长大然后趋于不变,固相颗粒的圆整度变化较为复杂.通过RAP法制备的AlSi7Mg铝合金半固态坯料平均晶粒尺寸为64~117μm,形状因子为0.76~0.89.低于599℃时,半固态的平均晶粒尺寸的立方粗化线性关系不明显,影响晶粒粗化的机制主要有Ostwald熟化、合并长大、再结晶和熔化;在599℃时,晶粒尺寸的立方粗化线性关系较为明显,此时Ostwald熟化为晶粒粗化的主导机制.  相似文献   

14.
SiC颗粒、保温时间对SiC_P/AZ61复合材料半固态组织的影响   总被引:1,自引:0,他引:1  
研究SiC颗粒、保温时间对SiCP/AZ61复合材料半固态组织的影响,并探讨复合材料等温过程中半固态组织演变机理。结果表明,SiCP/AZ61复合材料在温度595℃,不同保温时间(0min~90min)下,其组织的演变过程为,枝晶臂合并→大块状组织→晶界处局部熔化分离→晶粒组织球化→球状组织缓慢长大。在温度595℃,保温30min~60min时,SiCP/AZ61复合材料可以获得最佳的半固态组织;与AZ61基体合金相比,由于SiC颗粒的加入,使得SiCP/AZ61复合材料在等温热处理过程中的半固态组织更为细小,并且随着SiC颗粒体积分数增加,其半固态组织中球状颗粒的尺寸越小。  相似文献   

15.
研究了等温热处理温度和保温时间等工艺参数对AZ91D镁合金半固态组织演变和成形性的影响。结果表明 ,半固态等温热处理可以将普通金属型铸造的AZ91D镁合金锭中的枝晶组织转变为球形晶粒组织 ,其演变过程为 :在升温过程中晶界处部分γ相先发生溶解 ,随着温度的升高 ,剩余的γ相开始熔化 ,继而δ相也发生熔化 ,并在等温处理中逐渐演变为球状 ;保温温度越高 ,半固态重熔和δ相演变过程越快 ,保温温度过高或保温时间过长 ,试样易发生变形 ,同时 ,球状晶粒也容易趋于长大。AZ91D镁合金半固态成形所需的最佳工艺条件为加热温度 5 70℃左右 ,保温时间 2 5~ 35min ;或加热温度 5 80℃左右 ,保温时间 15~ 2 0min。  相似文献   

16.
利用波浪形倾斜板振动技术制备AZ31镁合金半固态坯料,获得较为理想的球形或近球形晶粒组织。结果表明:随二次加热温度的升高和保温时间的延长,半固态组织中的液相体积分数增大,固相逐渐长大并球化;AZ31镁合金580℃和610℃时二次加热组织均不适合半固态触变成形;适合触变成形的二次加热最优工艺为590℃保温40~60 min、或者600℃保温30 min;此条件下获得的平均晶粒直径为58~61μm,固相率为87%(体积分数)左右。晶格扩散机制对二次加热原子扩散起主导作用,是造成合金固相颗粒尺寸变化的根本原因;固液界面张力是造成颗粒形状球形或近球形变化的重要原因。  相似文献   

17.
通过固/液复合铸造技术制备了具有"半固态显微组织/枝晶组织"分布特征的包覆型7075/6061复合铸锭,研究了外熔体温度对该复合铸锭界面组织形态与力学性能的影响规律,探讨了该复合铸锭的界面结合机制。结果表明:外熔体温度760℃、半固态坯料预热温度300℃、保温40 min、空冷条件时,制备的7075/6061双金属复合铸锭的显微组织分布与形态特征较好、抗压强度较高;随着外熔体温度的升高,内层7075合金半固态坯料的近球状α-Al固相颗粒逐渐粗大、球形化逐渐减弱;复合界面处内层半固态坯料局部重熔的现象逐渐增加,界面附近的半固态显微组织形态呈:球状固相颗粒合并长大、非球状化、枝晶化的演变规律;室温压缩时,复合铸锭以圆柱体轴线呈45°角方向裂开,而非复合界面方向。  相似文献   

18.
通过半固态等温热处理,研究保温温度和保温时间对Mg-7Zn-0.3V镁合金把固态组织演变的影响。结果表明:保温温度和保温时间对Mg-7Zn-0.3V非枝晶组织的演变有重要的影响。提高保温温度或是延长保温时间,可以使Mg-7Zn-0.3V中的非枝晶组织转变为更加细小且分布均匀的球状颗粒。当保温温度过高或是保温时间过长时,半固态颗粒会出现合并和长大,其主要的演变机制与Ostwald熟化规律相符合。Mg-7Zn-0.3V合金的最佳等温热处理工艺是:保温温度605℃,保温时间40 min,非枝晶颗粒的平均尺寸为48.5μm,形状因子为1.26。  相似文献   

19.
添加Al-Ti-B的Mg-20Al-0.8Zn半固态组织的形成机理   总被引:1,自引:0,他引:1  
利用添加质量分数为0.4%的Al-Ti-B中间合金来改善Mg-20Al-0.8Zn镁合金的铸态组织,研究了该合金在半固态等温处理过程中的组织演变以及非枝晶组织的制备与控制.结果表明,Al-Ti-B能显著减小铸态Mg-20Al-0.8Zn合金的晶粒尺寸,且经过Al-Ti-B细化处理的Mg-20Al-0.8Zn合金在半固态等温热处理过程中可获得更加均匀、细小的球状固相颗粒,固相颗粒的粗化速度较慢.试验得到的半固态组织中固相颗粒的平均尺寸为55~65 μm.试验表明,采用等温处理(450℃+保温90~120 min;465℃+保温90 min或485℃+保温60~90 min)能够得到更适合触变成形的半固态浆料,其半固态浆料的组织更加均匀、晶粒更加细小.  相似文献   

20.
本文研究了Cu含量、重熔温度及等温时间对Mg-7Zn-0.3Mn镁合金半固态组织演变的影响。结果表明:Mg-7Zn-0.3Mn-1Cu合金的铸态组织由白色α-Mg基体和黑色共晶组织(α-Mg+Mg_4Zn_7+MgZn_2+CuMnZn)组成。在等温热处理过程中,Cu有加速非枝晶颗粒分离和球化的作用,且Cu含量(质量分数)为1.0%时效果最佳;Mg-7Zn-0.3Mn-1Cu镁合金通过适当提高保温温度或延长保温时间,能够得到细小且分布均匀的球状颗粒。然而当保温温度超过585℃或保温时间超过20 min时,半固态颗粒则会粗化长大。这种粗化长大现象是在合并长大机制与Ostwald熟化机制共同作用下产生的。在整个等温热处理过程中,半固态组织演变主要经历了初始粗化、组织分离、球化和最后粗化四个阶段。Mg-7Zn-0.3Mn-1Cu镁合金的最佳等温热处理工艺参数为保温温度585℃和保温时间20 min,其非枝晶颗粒的平均尺寸、形状因子和固相率分别为38.85μm、1.39和53.38%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号