首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nagata H  Tabuchi M  Hirano K  Baba Y 《Electrophoresis》2005,26(14):2687-2691
In this paper, we describe a method for size-based electrophoretic separation of sodium dodecyl sulfate (SDS)-protein complexes on a polymethyl methacrylate (PMMA) microchip, using a separation buffer solution containing SDS and linear polyacrylamide as a sieving matrix. We developed optimum conditions under which protein separations can be performed, using polyethylene glycol (PEG)-coated polymer microchips and electrokinetic sample injection. We studied the performance of protein separations on the PEG-coated PMMA microchip. The electrophoretic separation of proteins (21.5-116.0 kDa) was completed with separation lengths of 3 mm, achieved within 8 s on the PEG-coated microchip. This high-speed method may be applied to protein separations over a large range of molecular weight, making the PEG-coated microchip approach applicable to high-speed proteome analysis systems.  相似文献   

2.
Modifications to antibody affinity electrophoresis for improved detection of proteins have been developed. The bifunctional linker glutaraldehyde is added to the polyacrylamide gel solution for better incorporation of the bait antibody into a distinct region of a 10% w/v polyacrylamide gel. The addition of glutaraldehyde alleviates the need of an electrophoresis buffer with a specific pH. The protein sample to be analyzed is treated with 2% w/v sodium dodecyl sulfate (SDS) to ensure that they carry a negative charge. The negative charge will allow the proteins to migrate towards the cathode and hence pass through the area embedded with the bait antibody. It is observed that electrophoretic migration of bovine serum albumin (BSA) or protein G ceases upon encounter with anti-BSA whereas proteins ovalbumin, beta-lactoglobulin A, and myoglobin migrate freely. However, the addition of 0.1% w/v SDS in the native gel running buffer disrupts the antibody-antigen bond and neither BSA nor protein G can be captured by anti-BSA.  相似文献   

3.
Huang H  Xu F  Dai Z  Lin B 《Electrophoresis》2005,26(11):2254-2260
A microchip for integrated isotachophoretic (ITP) preconcentration with gel electrophoretic (GE) separation to decrease the detectable concentration of sodium dodecyl sulfate (SDS)-proteins was developed. Each channel of the chip was designed with a long sample injection channel to increase the sample loading and allow stacking the sample into a narrow zone using discontinuous ITP buffers. The pre-concentrated sample was separated in GE mode in sieving polymer solutions. All the analysis steps including injection, preconcentration, and separation of the ITP-GE process were performed continuously, controlled by a high-voltage power source with sequential voltage switching between the analysis steps. Without deteriorating the peak resolution, four SDS-protein analyses with integrated ITP-GE system resulted in a decreased detectable concentration of approximately 40-fold compared to the GE mode only. A good calibration curve for molecular weights of SDS-proteins indicated that the integrated ITP-GE system can be used for qualitative analysis of unknown protein samples.  相似文献   

4.
Dynamic capillary coatings have become widespread due to their efficacy in modifying the EOF in capillary electrophoretic separations and ability to limit unwanted analyte‐surface interactions. However, our understanding of exactly what types of interactions are taking place at the surface of a capillary when these dynamic additives are present is limited. In this work, we have chosen a simple, small molecule additive, tetramethylammonium to examine its influence on the EOF under typical separation conditions. What we have revealed is that this simple compound does not interact with the capillary surface in a very simple manner. Our initial hypothesis of a direct ionic interaction with the silanol surface has evolved with evidence of complex ion pairing between the silanols, the tetramethylammonium, and the buffer ions. This ion pairing can result in drastic changes in the EOF over time, and that the EOF can only be restored to initial levels with harsh rinses containing sodium hydroxide.  相似文献   

5.
Manipulation of the EOF is essential for achieving optimal separations by MEKC. In this paper, we present an extensive investigation of the effect of common experimental conditions on the EOF observed in a capillary coated with poly(diallyldimethylammonium chloride) (PDADMA) polyelectrolyte under MEKC conditions. It was found that highly reproducible cathodal EOF is achieved approximately at or just below the conditional CMC value of SDS in the electrolytes used. At concentrations of SDS greater than the CMC the EOF is independent of pH. The impact of common organic modifiers (ACN, methanol, urea, beta-CD and nonionic surfactant) on the EOF behavior in both a PDADMA-coated capillary and a bare silica capillary is compared. The suppressing effect of organic modifiers on the EOF is much stronger for coated capillary indicating that these compounds additionally reduce the negative charge density on the capillary surface due to alteration of the surfactant coating.  相似文献   

6.
A dynamic coating using methylcellulose (MC) and a nonionic detergent (polysorbate 20) was developed, which controlled protein adsorption onto the surface of microchannels on a microchip made of poly(methyl methacrylate) (PMMA). Optimum concentration of polysorbate 20 in combination with the range of MC concentrations controlled the protein adsorption onto the microchannel surface, and increased the solubility of the protein samples while facilitating the injection of high concentrations of MC solutions into the microchannels. Higher concentrations of nonionic detergent increased the EOF mobility as opposed to the electrophoretic mobility and caused the electrophoresis to fail. Nondenaturing microchip electrophoresis of protein samples with molecular masses ranging from 20 to 100 kDa were completed in 100 s. Also, successful separation of a BSA sample and its complex with anti-BSA mAb ( 220 kDa) was achieved on a PMMA microchip. The separation exhibited high reproducibility in both migration time (RSD = 1%) and peak area (RSD = 10-15%).  相似文献   

7.
Choi JK  Tak KH  Jin LT  Hwang SY  Kwon TI  Yoo GS 《Electrophoresis》2002,23(24):4053-4059
A background-free, fast protein staining method in polyacrylamide gel electrophoresis using an acidic dye, zincon (ZC) and a basic dye, ethyl violet (EV) is described. It is based on the counterion dye staining technique that employs two oppositely charged dyes to form an ion-pair complex in staining solution. The selective binding of free dye molecules to proteins in acidic solution produces bluish violet-colored bands. It is a rapid and end-point staining procedure, involving only fixing and staining steps that are completed in 1-1.5 h. The detection limit of this method is 8-15 ng of protein that is comparable to the sensitivity of the colloidal Coomassie Brilliant Blue G (CBBG) stain. Due to its sensitivity and speed, this stain may be more practical than any other dye-based stains for routine laboratory purposes.  相似文献   

8.
The separation of KM 20, that is in fact a mixture of non-ionic surfactants, was carried out by non-aqueous capillary electrophoresis. This complex mixture resulting from the condensation of ethylene oxide with fatty alcohols does not have chromophoric moieties. So, we analysed it after derivatization by means of 3,5-dinitrobenzoyl chloride. The proposed approach is based both on the formation of complexes with alkaline or ammonium cations in methanol and on the utilisation of a positively charged capillary. From a comparative study on the capillary treatment procedure, we used hexadimethrine bromide as electroosmotic flow reverser in order to obtain both repeatable analyses and good resolutions of the largest KM 20 oligomers. Then, among the five cations used to form complexes with KM 20, we pointed out that ammonium cation led to the best resolutions. Moreover, we evidenced that the counter-ion of this cation had a great influence on resolution because it modified the magnitude of electroosmotic flow. Ion pair formation that is more or less strong between ammonium and its counter-ion was involved in this variation of electroosmotic flow. So, we calculated the association constants for various ammonium salts in methanol. Then, using ammonium chloride as background electrolyte, we optimised the concentration of this salt, in methanol, in order to reach the optimal separation of KM 20 oligomers. Thus, a baseline separation was obtained by using 6 x 10(-2) mol/L NH4Cl as running electrolyte. In these conditions, we separated, in about 30 min, more than 30 oligomers of KM 20. The distribution of these oligomers that was determined from the optimal separation, appeared consistent with that obtained from HPLC analyses. Indeed, we determined that the mean ethoxylation number was equal to 18 while its real value is equal to 20.  相似文献   

9.
We report the results of a systematic investigation designed to optimize a method for quantifying radioactivity in proteins in sodium dodecyl sulfate-polyacrylamide gels. The method involves dissolving appropriately sized pieces of gel in hydrogen peroxide and heating to 70 degrees C overnight followed by liquid scintillation counting. H(2)O(2) had no effect on the count rates of [(14)C]bovine serum albumin (BSA) when counted in a conventional liquid scintillation system, and the count rates remained stable for several days. Temperatures below 70 degrees C resulted in incomplete extraction of radioactivity from gels containing [(14)C]BSA, but there was also a significant reduction in count rates in samples incubated at 80 degrees C. At 70 degrees C recovery was not affected by the amount of sample loaded onto the gel or by the staining procedure (Coomassie Brilliant Blue or SYPRO Ruby). Recoveries were in the range of 89-94%, and the coefficient of variation for five replicate samples was 5-10%. This method offers a reliable way of measuring the amount of radioactivity in proteins that have been separated by electrophoresis. It may be useful, for example, in quantitative metabolic labeling experiments when it is necessary to know precisely how much tracer has been incorporated into a particular protein.  相似文献   

10.
The chemical denaturation of RNase A was found to be mediated by sodium dodecyl sulfate (SDS) at various pH. The characterization of the unfolding pathway was investigated by spectrophotometry and differential scanning calorimetry (DSC), and was analyzed by multivariate curve resolution (MCR) as a chemometric method. The spectrophotometric titration curve of RNase A upon interaction with SDS indicated a distinct complex intermediate in glycine buffer at pH 3.3. This was accompanied with the catalytic activation of the enzyme and was concurrent with maximum population of the intermediate, determined by MCR. This was confirmed by the DSC profile of RNase A in the presence of SDS, indicated by two transitions in thermal unfolding. The kinetic data on the unfolding process of RNase A upon addition of SDS showed a two-phase pathway under the same conditions. The intermediate appeared at low pH especially at the pKa of SDS (pH 3.3). These results provide strong evidence of the influence of low pH (around the pKa of SDS) on the existence of an intermediate upon interaction of RNase A with SDS.  相似文献   

11.
A method for improving separations of peptides and other positively charged species in capillary zone electrophoresis with untreated capillaries using acidic buffers containing tetraalkylammonium cations is described. Tetramethylammonium and tetrabutylammonium cations dynamically modify the capillary surface, leading to a reversal in the direction of the electroosmotic flow. As a result, the adsorption of positively charged peptides and proteins is minimized, and resolution and peak capacity are improved as the migration of cationic analytes is counterbalanced by the electroosmotic flow. The combining effect of reversing electroosmotic flow and cyclodextrin inclusion complexation on separations of closely related peptides and a protein mixture, as well as tryptic digest of hemoglobin is demonstrated.  相似文献   

12.
The effects of the cosurfactants diethylene glycol monoalkyl ether [C i H2 i +1O(CH2CH2O) j OH (C i E j ; i=4, 6 and j=1, 2)] on the formation of an oil-in-water styrene (ST) microemulsion and the subsequent free radical polymerization were studied. For comparison, the data for the C i H2 i +1OH (C i OH; i=4, 6) systems obtained from the literature were also included in this work. Sodium dodecyl sulfate was used as the surfactant. The pseudo three-component phase diagram (macroemulsion, microemulsion and lamellar gel phases) was constructed for each cosurfactant. The primary parameters selected for the polymerization study are the concentrations of cosurfactant and styrene. The number of latex particles nucleated is much smaller than that of the microemulsion droplets initially present in the reaction system. Limited flocculation of the latex particles occurs to some extent during polymerization. Among the cosurfactants investigated, the C4OH-containing polymerization system is the least stable. By contrast, the diethylene glycol monoalkyl ether group of C i E j tends to enhance the latex stability. C i E j is more effective in stabilizing the ST microemulsion and the subsequent polymerization in comparison with the C i OH counterpart. Received: 24 December 1999 Accepted: 9 February 2000  相似文献   

13.
Modification to the original immobilized metal affinity electrophoresis (IMAEP) technique is presented. SDS-PAGE is used instead of native PAGE for improved extraction of phosphoproteins from a mixture of proteins. Protein samples treated with 2% w/v SDS instead of native sample buffer ensure that proteins are negatively charged. These negative charges on the proteins assure that the proteins migrate electrophoretically towards the anode regardless of their pI values and hence pass through the region embedded with the metal ions. Another benefit of treating proteins with SDS is that it unfolds the phosphoproteins exposing the phosphate groups to facilitate the metal-phosphate interactions. Phosphorylated ovalbumin can only be extracted after SDS sample buffer treatment. Data show that there is no detrimental effect upon SDS treatment on the extraction of phosphoproteins from a mixture of proteins. Electrophoretic migration of phosphoproteins ceases upon encounter with metal ions like Al+3, Ti+3, Fe+3, Fe+2, and Mn+2 whereas non-phosphorylated proteins migrate freely.  相似文献   

14.
A simple and sensitive electroanalytical method is developed for the determination of lead by adsorptive stripping voltammetry (AdSV) in the presence of morin-5′-sulfonic acid (MSA) and sodium dodecyl sulfate (SDS). The Pb-MSA complex accumulates on the surface of a hanging mercury drop electrode (HMDE) and peak current is measured by square wave voltammetry (SWV). The complex is reduced at −0.48 V and peak current increases when low concentrations of SDS are added to the sample solution. The experimental variables pH, MSA concentration (CMSA); accumulation time (tacc); accumulation potential (Eacc), and SDS concentration (CSDS), as well as potential interferences, are investigated. Under the optimized conditions (pH 3.2; CMSA: 0.5 μmol L−1; tacc: 60 s; Eacc: −0.35 V, and CSDS: 20 μmol L−1), peak current is proportional to the concentration of Pb(II) over the 0.1-32.0 μg L−1 range, with a detection limit of 0.04 μg L−1. The relative standard deviation for a solution containing 5.0 μg L−1 of Pb(II) solution was 1.5% for seven successive assays. The method was validated by determining Pb(II) in synthetic sea water (ASTM D665) spiked with ICP multi-element standard solution and in certified reference water (GBW08607). Finally, the method was successfully applied to the determination of Pb(II) in tap water and sea water after UV digestion.  相似文献   

15.
Methyl methacrylate and butyl methacrylate were polymerized in oil-in-water microemulsions that were stabilized by sodium dodecyl sulphate (SDS). A poly(N-acetylethylenimine) (PNAEI) macromer was also included in the recipe, as a cosurfactant and a comonomer. Polymerizations were initiated by UV-irradiation. The average diameters of latex particles, obtained by STM, were in the range of 17-200 nm. The experimental data evidenced that the particle size was mainly dependent on the SDS/PNAEI ratio. Polymerization yields were around 75-85%. The synthesized copolymers have viscosity average molecular weights in the range of 2.1-2.4×106 and glass transition temperatures of 38.0-43.5°C, lower than those obtained without using PNAEI. The investigation by means of FTIR and 1H-NMR techniques revealed that PNAEI was incorporated into the nanoparticles.  相似文献   

16.
Non-native conformations of proteins were generated by temporary contact with aqueous solutions of sodium dodecyl sulfate (SDS) and separated from the native state with capillary zone electrophoresis (CZE) in alkaline borate buffer deficient of SDS. Nine proteins at concentrations of 2.0 or 3.0 mg.L(-1) were compared in terms of their susceptibility to SDS. For superoxide dismutase and ferritin the tendency of unfolding was modest with < 25% of the protein being transformed to the non-native state at 10 mmol.L(-1) SDS. Highest susceptibility was observed for albumin, myoglobin (Mb), and hemoglobin with > 75% in the non-native state even at 2.0 mmol.L(-1) SDS. The influence of varying SDS concentrations on the conformational state of Mb was tested. Increasing the SDS concentration, circular dichroism revealed a reduction in alpha-helix, an increase in random coil, and an introduction of beta-sheet, which is absent in native structure. Modifications in the secondary structure were in agreement with distinct changes in the shape of the non-native Mb peak in CZE and make a gradual unfolding/refolding process with several coexisting molten globules instead of two-state transition of conformations most plausible for Mb. CZE was found to contribute to a further understanding of holo-Mb transformation towards a population of non-native conformations (i) by means of calculated peak area ratios of native to non-native states, which showed sigmoid transition, (ii) by detecting the release of the prosthetic heme group, and (iii) by changes in the effective electrophoretic mobility of the Mb-SDS peaks. Reconstituted holo-Mb forms differed in the Soret band around 410 nm, indicating diversity in the conformation of the heme pocket.  相似文献   

17.
Zhang YX  Li H  Havel J 《Talanta》2005,65(4):853-860
The prediction of migration time of electroosmotic flow (EOF) marker was achieved by applying artificial neural networks (ANN) model based on principal component analysis (PCA) and standard normal distribution simulation to the input variables. The voltage of performance, the temperature in the capillary, the pH and the ionic strength of background electrolytes (BGE) were applied as the input variables to ANN. The range of the performance voltage studied was from 15 to 27 kV, and that of the temperature in the capillary was from 20 to 30 °C. For the pH values studied, the range was from 5.15 to 8.04. The range of the ionic strength investigated in this paper was from 0.040 to 0.097. The prediction abilities of ANN with different pre-processing procedure to the input variables were compared. Under the same performance conditions, the average prediction error of the migration time of the EOF marker was 5.46% with RSD = 1.76% according to 10 parallel runs of the optimized ANN structure by the proposed approach, and that of the 10 parallel predictions of the optimal ANN structure for the different performance conditions was 12.95% with RSD = 2.29% according to the proposed approach. The study showed that the proposed method could give better predicted results than other approaches discussed.  相似文献   

18.
 The role played by cholesteryl sulfate (Chol-sulf) in the solubilization of liposomes modeling the stratum corneum (SC) lipids by sodium dodecyl sulfate (SDS) was studied. We determined the surfactant-to-lipid molar ratios and the bilayer/aqueous phase surfactant partition coefficients of this interaction by varying the proportion of Chol-sulf, the relative proportions of the others lipids remaining constant. These parameters were determined by monitoring the changes in the static light scattering of the system during solubilization. The fact that the free surfactant concentration was always similar to its critical micelle concentration indicates that the liposome solubilization was mainly ruled by the formation of mixed micelles. The SDS ability to saturate and solubilize SC liposomes decreased as the proportion of Chol-sulf in the bilayers increased until a minimum was reached for a Chol-sulf proportion of about 15%. Inversely, the SDS partitioning into liposomes (or affinity with these bilayers) increased as the proportion of Chol-sulf increased until a maximum was reached at similar Chol-sulf proportions (10–15%). Hence, in these Chol-sulf proportions (similar to that existing in the intercellular lipids, which was 10%) the ability of SDS molecules to interact with liposomes exhibits a minimum despite their enhanced partitioning into liposomes. These effects may be related to the reported dependencies of the level of Chol-sulf on the abnormalities in the skin barrier function and on the SC intercellular cohesion. Received: 12 October 1999 Accepted: 20 January 2000  相似文献   

19.
Many cellular functions are regulated through protein isoforms. Changes in the expression level or regulatory dysfunctions of isoforms often lead to developmental or pathological disorders. Isoforms are traditionally analyzed using techniques such as gel- or capillary-based isoelectric focusing. However, with proper electro-osmotic flow (EOF) control, isoforms with small pI differences can also be analyzed using capillary zone electrophoresis (CZE). Here we demonstrate the ability to quickly resolve isoforms of three model proteins (bovine serum albumin, transferrin, alpha1-antitrypsin) in capillaries coated with novel dynamic coatings. The coatings allow reproducible EOF modulation in the cathodal direction to a level of 10(-9) m2V(-1)s(-1). They also appear to inhibit protein adsorption to the capillary wall, making the isoform separations highly reproducible both in peak areas and apparent mobility. Isoforms of transferrin and alpha1-antitrypsin have been implicated in several human diseases. By coupling the CZE isoform separation with standard affinity capture assays, it may be possible to develop a cost-effective analytical platform for clinical diagnostics.  相似文献   

20.
In efforts to find genetic resources with high nutritional value of rice seed, we assessed the diversity of the major storage protein glutelin in 13 wild and 2 cultivated rice species by a unique SDS-PAGE method and subunit-specific antibodies. Maximum separation of microheterogeneous glutelin alpha-polypeptides, which is a prerequisite for the diversity evaluation, could be attained by SDS-PAGE performed at higher temperature (45 degrees C) than the generally employed temperatures (4-25 degrees C). Seven antipeptide antibodies were raised against subunit-specific epitope sequences designed at five sites from four variable regions spanning the glutelin alpha-polypeptides. High specificity of each antibody was confirmed using rice glutelin mutants, and demonstrated considerable variation in amino acid sequence and accumulation level of glutelin subunit in wild species, in combination with the higher-temperature SDS-PAGE. The degree of the variation was, however, changed according to the site of variable regions and the type of subunit. Some wild species accumulated nutritious GluB subunits more than cultivated rice. The wild species Oryza longiglumis and O. brachyantha had glutelin with low reactivity against most antibodies examined in this study, reflecting the significant divergence. Such wild species may hopefully serve as important genetic resources for nutritional improvement of cultivated rice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号