首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
无机纳米粒子原位复合聚氨酯研究   总被引:18,自引:0,他引:18  
将纳米二氧化硅 (SiO2 )经预分散后加入聚氨酯 (PU)反应体系进行原位聚合。结果表明所得PU有较好力学性能。透射电镜 (TEM )照片显示纳米SiO2 在PU中基本上达到纳米分散  相似文献   

2.
利用纳米SiO2和玄武岩纤维对聚氨酯注浆材料进行复合改性,制备了聚氨酯固结体,研究了异氰酸酯指数,水、纳米SiO2和玄武岩纤维的添加量以及玄武岩纤维的长度等因素对聚氨酯固结体压缩、拉伸性能的影响主次顺序,利用傅立叶变换红外光谱仪(FTIR)、扫描电镜仪(SEM)对试样进行表征.结果表明:纳米SiO2和玄武岩纤维对固结体有增强作用,当异氰酸酯指数为1.20、水的添加量为0.5%、纳米SiO2的添加量为2.0%、玄武岩纤维的添加量为5.0%、纤维长度分别为3.0mm时,材料的压缩强度达到最佳值.  相似文献   

3.
采用原位聚合法,通过掺入不同含量(0,2%,4%和6%)(质量分数)的纳米SiO2,制备了纳米SiO2改性聚氨酯注浆材料。通过电子密度计、黏度计、电子万能试验机和SEM等对该材料的密度、包水性、凝胶时间、力学性能和微观形貌等进行了测试表征。结果表明,随着纳米SiO2含量的增加,改性聚氨酯注浆材料的密度、黏度、固含量、凝胶时间和包水性均呈现出逐渐增大的趋势。当纳米SiO2的含量为6%(质量分数)时,试样的密度、黏度、凝胶时间、固含量、包水性和压缩强度均达到了最大值,分别为1.21 g/mol, 1 769 mPa·s, 140.8 s, 78%,53.9 s和0.115 MPa;随着纳米SiO2含量的增加,改性聚氨酯注浆材料的遇水膨胀率和发泡率均呈现出逐渐减小的趋势,当纳米SiO2的含量为6%(质量分数)时,试样的遇水膨胀率和发泡率达到了最小值,分别为811.2%和150.5%;SEM分析发现,未掺杂纳米SiO2的聚氨酯注浆材料的尺寸分...  相似文献   

4.
选用湿态纳米羟基磷灰石(HA)与脂肪族聚氨酯(PU)为原料,采用溶液共混法和溶剂挥发法制备了亲水性羟基磷灰石/聚氨酯(HA/PU)纳米复合材料,并采用SEM、吸水实验和力学实验等方法对该复合材料的形貌和性能进行了研究。结果表明磷灰石晶体以纳米状态均匀地分布在PU基质中,过高含量的纳米HA易使纳米粒子团聚,不利于其在PU基体中的均匀分散;在制备PU的多元醇原料中引入亲水性较强的聚乙二醇,可提高PU表面和整体的亲水性;随着硬段含量的增加,复合材料的拉伸强度和弹性模量呈上升趋势,断裂伸长率下降;随着软段中聚乙二醇含量的升高,弹性模量大幅下降,拉伸强度和断裂伸长率先升高后下降;纳米HA的添加可同时提高复合材料的拉伸强度和断裂伸长率,当纳米HA的质量分数为30%时,复合材料的综合力学性能达到最佳。  相似文献   

5.
以气相纳米二氧化硅为填料,交联聚苯乙烯(CLPS)为基体,采用原位本体聚合法制备了不同二氧化硅含量的SiO_2/CLPS复合材料,并利用透射电镜、红外光谱、差示扫描量热分析、热重分析和动态力学分析等技术对材料微观结构、热性能和介电性能进行了研究。结果表明,SiO_2质量分数不超过2%时,SiO_2颗粒以5~7 nm的粒径均匀地分散于交联聚苯乙烯基体中,聚合物基体与SiO_2产生较强的界面作用,形成了介电性能优异的纳米复合材料,介电常数和介电损耗分别保持在2.48~2.50和(4~8)×10-4之间;随着SiO_2含量进一步增加,材料的介电损耗显著增大,复合材料动态储能模量和玻璃化转变温度随SiO_2含量增加呈先上升后下降的趋势,在SiO_2质量分数为2%时达到最高,复合材料的玻璃化转变温度较纯CLPS有明显提高。  相似文献   

6.
原位生成纳米SiO2/橡胶复合材料的制备及性能研究   总被引:1,自引:0,他引:1  
采用原位生成技术制备了纳米SiO2/橡胶复合材料,研究了生胶的结构、反应时间、催化剂、偶联剂种类及用量对SiO2生成量及其增强橡胶硫化胶性能的影响.结果表明:生胶的结构对SiO2的生成量有较大的影响,不同生胶中生成SiO2量的顺序为NR>IIR>SBR>BR>NBR.随着反应时间的增加,SiO2的生成量增加,72h后基本达到恒定值,偶联剂的种类对SiO2生成量影响不大.当Si-69的用量为2g/100gNR、催化剂为乙二胺、反应时间为72h时,效果最佳.原位生成纳米SiO2填充橡胶硫化胶的性能优于机械共混法填充橡胶硫化胶的性能.  相似文献   

7.
详细介绍了共混法、原位聚合法和溶胶凝胶法制备纳米SiO2改性水性聚氨酯的特点,并对水性聚氨酯纳米复合材料的应用以及研究方向作了展望。  相似文献   

8.
候发秋  陈永军  卿宁 《材料导报》2013,27(Z1):66-69
综述了近年来纳米二氧化硅/水性聚氨酯复合材料的研究进展.重点介绍了纳米二氧化硅/水性聚氨酯复合材料的制备方法,展望了此类复合材料的发展趋势及应用前景.  相似文献   

9.
对环氧树脂/纳米SiO2复合材料的低温力学性能进行了研究.在环氧树脂中加入SiO2形成复合材料,并采用对纳米颗粒表面进行硅烷偶联处理的方法实现了SiO2纳米粒子在树脂基体中的均匀分散.在液氮下对一部分复合材料进行冷冻,然后通过电子万能实验机和冲击实验机测试其低温力学性能,并与未冷冻的复合材料的室温力学性能进行比较.结果表明,复合材料低温下的拉伸强度比室温下的高,但冲击强度和断裂伸长率有所下降.  相似文献   

10.
采用超声分散、机械剪切搅拌和纳米SiO_2粒子表面处理等多种分散工艺,制备了纳米SiO_2/环氧树脂复合材料。采用SEM、电子拉力机、粘弹谱仪和脉冲声管测试系统分别研究了纳米SiO_2/环氧树脂复合材料的微观结构、拉伸性能、动态力学性能和水声性能。结果表明,超声波分散法以及预处理法能够将纳米SiO_2粒子均匀分散在环氧树脂基体中,并且SiO_2粒子呈纳米尺度分布在环氧基体中。相对纯环氧树脂材料,纳米SiO_2/环氧树脂复合材料的拉伸强度提高了5%—30%,伸长率提高了2%—14%;储能模量随纳米SiO_2粒子的加入与均匀分散而提高,损耗因子则略有下降;吸声系数相对纯环氧树脂材料提高了6—10倍;而且纳米SiO_2/环氧树脂复合材料的常规力学性能、动态力学性能以及水声性能受纳米粒子的分散效果影响明显,分散越均匀,变化越大。  相似文献   

11.
采用熔融共混技术制备了氧化石墨烯(GO)-nano SiO_2杂化材料填充改性的形状记忆热塑性聚氨酯(GO-nano SiO_2/TPU)复合材料,探讨了GO-nano SiO_2杂化材料对复合材料力学性能、熔融指数及形状记忆性能的影响。结果表明:GO-nano SiO_2含量对GO-nano SiO_2/TPU复合材料的力学性能有明显的影响,其含量为0.5wt%~1wt%时,GO-nano SiO_2/TPU复合材料的综合力学性能较好。熔融指数分析表明,填料的加入会降低材料的加工流动性能。形状记忆性能研究表明,加入GO-nano SiO_2杂化材料使得GO-nano SiO_2/TPU复合材料的形状固定率先降低后上升,在含量为1wt%后上升趋势更加明显;而形状回复率随填料含量的增加而呈降低趋势,并且在100℃高温这种变化趋势更加明显和稳定,回复温度越高,形状回复率越好。  相似文献   

12.
颗粒增强铜基复合材料的研究进展   总被引:7,自引:1,他引:7  
为了研究颗粒增强相对铜基复合材料的性能的影响,对不同类型铜基复合材料的特点及其制备方法进行对比分析,探讨了颗粒相的生成机制,重点论述了颗粒增强相的类型及铜基复合材料的制备工艺.结果表明在铜基体中引入纳米分散相进行复合,可以使铜合金的力学性能得到极大改善,其中机械合金化和原位复合化学反应获得的纳米陶瓷颗粒在铜基复合材料中效果最佳;反应喷射沉积成型法、液相反应原位生成法和机械合金化法在制备纳米粒子增强铜基复合材料方面有着良好的应用前景.  相似文献   

13.
采用Hummers法制备了氧化石墨烯(Graphene Oxide,GO),再与经硅烷偶联剂(APTES)偶联改性纳米SiO_2所得的产物(nano SiO_2—NH_2)混合,制备了石墨烯片(Graphene Sheets,GS)接枝纳米SiO_2杂化材料(nano SiO_2-g-GS)。以nano SiO_2-g-GS为填料,热塑性聚氨酯(TPU)为基体,通过熔融共混法制备共混型nano SiO_2-g-GS/TPU复合材料,并对填料和复合材料进行测试和表征。拉伸测试显示nano SiO_2-g-GS的加入对基体TPU有一定的补强作用,使复合材料定伸应力(300%、500%和1 000%)增大。DSC测试显示,与纯TPU相比,nano SiO_2-g-GS/TPU复合材料的结晶温度有大幅升高,填料含量为1wt%时,TPU的结晶温度升高了44℃。形状记忆测试结果显示,随nano SiO_2-g-GS含量增加,nano SiO_2-g-GS/TPU复合材料的形状回复率(Rr)逐渐降低,但形状固定率(Rf)逐渐升高。当nano SiO_2-g-GS质量分数为1wt%时,nano SiO_2-g-GS/TPU复合材料性能最佳。  相似文献   

14.
纳米TiO2/聚乳酸复合材料的制备和表征   总被引:4,自引:0,他引:4  
采用原位聚合的方法制备了有机化处理过的纳米 TiO 2粒子质量分数分别为 1 wt %、3 wt %、5 wt %和10 wt %的 4种纳米 TiO 2/聚乳酸复合材料。SEM结果表明 , 当纳米 TiO 2粒子质量分数较低时 , 纳米 TiO 2在聚乳酸基体中呈现均匀稳定分散 , 而质量分数较高时则发生团聚。通过力学和热学等性能测试发现复合材料的最大热分解温度、 玻璃化转变温度和力学性能相对于聚乳酸有较大幅度提高 , 其中纳米 TiO 2的质量分数为 3 wt %时改善效果最明显 , 其最大热分解温度、 玻璃化转变温度分别比聚乳酸提高了 25. 3℃和 4. 9℃, 拉伸强度、 断裂伸长率和弹性模量分别提高了 83. 6 %、 6. 73 %和 129. 4 %。  相似文献   

15.
为提高纳米SiO2在硅橡胶(SR)基体中的分散性及两相间的界面结合力,设计以羟基硅油(HSO)和γ-甲基丙烯酰氧基丙基三甲氧基硅烷(KH570)为纳米SiO2的表面封端改性剂,并将改性SiO2与双组份加成型液体SR复合得到改性纳米SiO2/SR复合材料。通过一系列表征手段对改性纳米SiO2的形貌结构及其在乙醇中的分散性等进行分析,研究了改性纳米SiO2对纳米SiO2/SR复合材料的断面形貌、力学性能及热稳定性的影响。结果表明:KH570成功接枝到纳米SiO2表面并与SR基体间形成化学键。当HSO协同KH570改性纳米SiO2时,可有效改善纳米SiO2在SR基体中的分散性能及纳米SiO2与SR两相间的界面结合性能,并显著提高纳米SiO2/SR复合材料的力学性能和热稳定性。将SiO2∶HSO∶KH570以质量比为2.0∶0.2∶0.6处理的改性纳米SiO2粒子,得到的改性纳米SiO2/SR复合材料起始热分解温度提高了230℃。当SiO2∶HSO∶KH570质量比为2.0∶0.2∶0.45时,改性纳米SiO2/SR复合材料的拉伸强度和断裂伸长率分别提高了约1倍。   相似文献   

16.
通过表面接枝技术将硬脂酸甘油酯型流滴剂(B)接枝到纳米SiO2(nano SiO2)表面,制得了nano SiO2接枝B的接枝物(nano SiO2-g-B);将nano SiO2-g-B与预辐照聚乙烯(ir-LLDPE)熔融挤出接枝,制备了nano SiO2-g-B/ir-LLDPE复合材料。利用FTIR、SEM、DSC和加速流滴等对材料的结构和性能进行了表征。结果表明:nano SiO2-g-B/ir-LLDPE复合材料的熔融温度和结晶温度降低,其力学性能较ir-LLDPE没有较大的变化;与普通共混的方法相比,nano SiO2接枝流滴剂方法制备的nano SiO2-g-B/ir-LLDPE复合材料薄膜的流滴期最高可延长6天,达到25天,是相同条件下普通商用流滴剂薄膜的1.47倍。  相似文献   

17.
提出了一种经济、简便、实用的制备沸点高于100℃的有机溶剂SiO2溶胶的方法,可制备出无色、澄清、透明、浓度为5%-10%的有机硅溶胶,在pH值6—9范围内稳定.使用HaCS1(OCH3)3作为封端剂可阻止SiO2溶胶凝胶化,其作用机制在于:通过封端剂分子水解出的活性羟基,与SiO2粒子表面活性基团反应,阻断溶胶粒子的生长,使溶胶稳定性提高.以这种有机溶剂纳米SiO2溶胶作为铝电解电容器工作电解液中添加剂,可改善电容器的性能,使其耐压有较大提高.  相似文献   

18.
为了从理论上探讨纳米粒子在基体材料中的分布规律, 以纳米SiC质量分数为3%、 5%、 7%、 9%的SiC/PTFE(聚四氟乙烯)复合材料为例, 根据纳米SiC的半径(25 nm)、 密度(3.2 g/cm3)、 质量分数和基体材料的密度(2.2 g/cm3), 以10-12 g为质量单位、 25 nm:1像素为比例尺, 建立了纳米粒子在基体中均匀/偏聚分布的三维仿真模型, 基于其盒维数定量表征了不同团聚/偏聚程度的纳米粒子的分散度, 并进行了力学实验验证。结果表明: 均匀分布下随着纳米SiC粒子半径的不断增加, 或体积分数的不断减小, 其盒维数也逐渐减小; 当SiC粒子半径超过100 nm时, 不再具有分形特性。偏聚分布下随着纳米SiC粒子(半径为50 nm)间距的不断加大, 或体积分数的不断减小, 或层状、 线状、 团状分布的依次改变, 其盒维数也逐渐减小; 相同体积分数下偏聚分布的盒维数低于均匀分布; 当粒子间距超过450 nm时, 不再具有分形特性。均匀分布下纳米SiC/PTFE复合材料的力学性能测试结果与其三维仿真模型的盒维数线性相关(|R|>0.9)。盒维数可定量表征纳米粒子的分散度, 并可用于预测纳米复合材料的宏观性能。  相似文献   

19.
纳米SiO2的表面改性及其在聚氨酯弹性体中的应用   总被引:13,自引:0,他引:13  
张颖  侯文生  魏丽乔  刘少兵  许并社 《功能材料》2006,37(8):1286-1288,1291
用十二烷基苯磺酸钠(SDBS) 对表面包覆Al(OH)3的纳米SiO2进行了改性处理.通过IR、自动电位粒度仪和FESEM等测试手段对表面处理前后纳米SiO2的表面结构、界面电性能和分散状况进行了分析表征.考查了处理前后纳米SiO2与聚氨酯弹性体(PUE)的相容性及其对PUE材料力学性能的影响.结果表明,经SDBS对表面包覆Al(OH)3的纳米SiO2粉体进行改性后,纳米SiO2粉体的团聚现象减少,分散性提高,单个纳米SiO2颗粒的平均粒径约为30nm;经表面处理后的纳米SiO2粉体与有机基体PUE的相容性增强,并对PUE材料的力学性能有了较大的改善,能同时达到增强增韧的效果.  相似文献   

20.
SiO2粒子经偶联剂γ-氨丙基三乙氧基硅烷(KH550)表面改性后,与木质纤维、聚氯乙烯(PVC)及其它助剂通过熔融混炼制备改性SiO2-木质纤维/PVC复合材料,用FTIR、SEM和同步热分析仪(STA)对SiO2粒子和SiO2-木质纤维/PVC复合材料的结构与性能进行测试与表征。FTIR分析表明,SiO2粒子表面接枝了KH550的特征官能团,KH550成功地接枝到SiO2粒子表面;SEM分析表明,改性纳米SiO2粒子能在木质纤维/PVC复合材料中均匀分散,其粒径在100 nm左右;添加改性的SiO2粒子后,木质纤维和PVC结合更加紧密,孔洞间隙减少。纳米SiO2质量分别占木质纤维质量的10%、8%和10%时,SiO2-木质纤维/PVC复合材料的弹性模量、拉伸强度、冲击强度分别达到最优值4.66 GPa、31.12 MPa和4.11 kJ/m2,与未添加SiO2的复合材料相比分别提高了50.29%、28.91%和16.65%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号