首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
为了改善炭纤维/环氧树脂复合材料的界面性能,以对硝基苯胺为原料,通过两步重氮化还原反应,在炭纤维表面共价接枝氧化石墨烯,制备出氧化石墨烯/炭纤维(GO/CF)复合增强体。研究了反应机理,并对改性前后炭纤维表面的化学结构、微观形貌、表面粗糙度、单丝拉伸强度和炭纤维/环氧树脂复合材料的界面性能等进行了测试分析。结果表明,接枝GO后,炭纤维表面粗糙度增加了188%,单丝拉伸强度提高了13. 2%,断裂伸长率增加12. 1%,界面黏结强度提高了80. 2%。  相似文献   

2.
三维网状石墨烯/环氧树脂热界面复合材料由于具有良好的热导性能和力学性能,而被广泛应用于微电子器件领域。但是通过化学剥离-还原法制备石墨烯,在填加石墨烯质量分数相同的条件下,石墨烯/环氧树脂热界面复合材料的热导率差别仍然很大。研究发现这主要是由于石墨烯表面官能团含量不同所导致的,因此很难建立统一的标准评估石墨烯作为导热填料的作用效果。为了避免表面官能团对石墨烯/环氧树脂复合物热导率的影响,本研究小组采用化学气相沉积法制备的三维网状石墨烯作为导热填料,对环氧树脂进行修饰,制备了一系列石墨烯/环氧树脂材料。通过研究三维网状石墨烯含量对石墨烯/环氧树脂材料热导率、力学性能及热导率在高温条件下稳定性的影响,有助于完善石墨烯修饰的环氧树脂热界面复合材料的研究,并建立石墨烯作为导热填料的评价体系。  相似文献   

3.
石墨烯/环氧树脂复合材料的制备与力学性能   总被引:1,自引:0,他引:1  
通过对氧化石墨热膨胀还原并用超声分散制备了石墨烯,并对所得产物进行分析表征。用超声分散和模具浇注成型法制备了石墨烯/环氧树脂纳米复合材料。研究了石墨烯含量对石墨烯/环氧树脂复合材料力学性能和断面形貌的影响,分析了石墨烯对环氧树脂的增强机理。结果表明,随着石墨烯含量的增加,石墨烯/环氧树脂复合材料的拉伸强度及模量先增加后减小;当石墨烯的质量分数为0.1%时,复合材料的拉伸强度达到最大值60.9MPa,比纯环氧树脂提高了16.88%;当石墨烯的质量分数为0.5%时,复合材料的拉伸模量达到最大值2833.3MPa,比纯环氧树脂提高了48.29%。  相似文献   

4.
分别以氧化石墨粉(GO)、还原氧化石墨烯乙醇悬浮液(RGO)和热法还原石墨烯粉(TRG)为填料,分散于酚醛树脂(PR)的乙醇溶液中,再将这些基体混合物涂覆于炭纤维(CF)布上,经热压成型工艺制备氧化石墨烯/酚醛树脂/炭纤维、还原氧化石墨烯乙醇悬浮液/酚醛树脂/炭纤维、热法还原氧化石墨烯/酚醛树脂/炭纤维层次复合材料。研究了GO、RGO和TRG对复合材料结构、压缩性能、弯曲性能及磨擦性能的影响。结果表明,与纯酚醛树脂/炭纤维复合材料相比,当纳米填料的质量分数仅为0.1%时,层次复合材料的压缩性能可显著提高,其中,热法还原氧化石墨烯/酚醛树脂/炭纤维的压缩强度和模量分别提高了178.9%,129.5%;弯曲性能也可得到一定的改善。还原氧化石墨烯乙醇悬浮液/酚醛树脂/炭纤维层次复合材料的最大储能模量可提高75.2%。所有改性石墨烯/酚醛树脂/炭纤维层次复合材料的Tg均有所降低。  相似文献   

5.
分别通过超声共混法和原位还原法制备了石墨烯/环氧树脂复合材料。利用X射线光电子能谱(XPS)、X射线衍射(XRD)、光学显微镜和扫描电子显微镜(SEM)对复合材料的结构进行了表征,并对其力学性能进行了测试。结果表明,原位还原法制备的石墨烯/环氧树脂复合材料中,氧化石墨烯已经被成功地还原为石墨烯,并且石墨烯具有良好的分散性。力学性能测试结果表明,两种方法制备的复合材料的力学强度较纯环氧树脂明显提高。当石墨烯的量为m(GO)/m(EP)=0.3/100时,超声混合法制备的石墨烯/环氧树脂复合材料的拉伸强度和弯曲强度分别最大提高约29.2%和1.4%;而原位还原法制备的石墨烯/环氧树脂复合材料的拉伸强度和弯曲强度分别最大提高约40.5%和9.4%。  相似文献   

6.
为了改善玄武岩纤维/环氧树脂复合材料的界面性能,通过偶联剂对氧化石墨烯进行改性,并将改性后的氧化石墨烯引入到上浆剂中对玄武岩纤维进行表面涂覆改性,同时制备了氧化石墨烯-玄武岩纤维/环氧树脂复合材料.采用FTIR表征了氧化石墨烯的改性效果;运用SEM分析了改性上浆剂处理对玄武岩纤维表面及复合材料断口形貌的影响和作用机制.结果表明:偶联剂成功接枝到氧化石墨烯表面;玄武岩纤维经氧化石墨烯改性的上浆剂处理后,表面粗糙度及活性官能团含量增加,氧化石墨烯-玄武岩纤维/环氧树脂界面处的机械齿合作用及化学键合作用增强,界面黏结强度得到改善,玄武岩纤维的断裂强力提高了30.8%,氧化石墨烯-玄武岩纤维/环氧树脂复合材料的层间剪切强度提高了10.6%.  相似文献   

7.
利用预浸料技术热压工艺,制备了氧化石墨烯改性的炭纤维环氧树脂基复合材料。为获得更好的分散效果及加工性能,选用四氢呋喃作为溶剂来分散氧化石墨烯。结果显示:含有氧化石墨烯的混合胶液体系可稳定3 h左右,满足预浸料制备工艺要求;制得的复合材料单向层板层间剪切强度(ILSS)有较大提高,当氧化石墨烯含量为0.10%时,其达到96.14 MPa,与空白样板相比提高了约8.05%,玻璃化转变温度升高近5℃。断面形貌分析表明,上述显著提高可能是由于氧化石墨烯的加入使得环氧树脂增韧以及炭纤维复合材料的界面得到较大的改善所致。  相似文献   

8.
纤维与基体间的界面性能是决定纤维增强树脂基复合材料力学性能的关键因素。采用单纤维断裂实验方法研究二氧化硅纳米颗粒对炭纤维/环氧树脂复合材料界面的增强作用。实验结果表明,涂覆在炭纤维表面和均匀分散在环氧树脂基体中的二氧化硅纳米颗粒含量分别为4.9g/m2和25%(质量分数)时,复合材料界面性能均得到改善,界面抗剪强度相比纯树脂体系分别提高了10.0%和15.0%。通过对纤维断点处双折射光斑和样品断面形貌等信息分析,可知纳米颗粒均匀分散并镶嵌到炭纤维表面沟槽中形成的锁扣结构是界面性能提高的重要原因。  相似文献   

9.
石墨烯/氧化石墨烯-聚乳酸的制备与表征   总被引:5,自引:5,他引:0  
通过优化Hummers法制备了氧化石墨烯,并用水合肼还原法制备了石墨烯,且对自制的石墨烯和氧化石墨烯进行了测试及分析;然后通过溶液插层法制得纳米级聚乳酸/石墨烯和聚乳酸/氧化石墨烯复合材料,并对其分散性、热学性能以及力学性能进行了分析。对石墨烯和氧化石墨烯的表征结果说明,水合肼可以还原氧化石墨,所制备的石墨烯纯度较高。对聚乳酸/石墨烯和聚乳酸/氧化石墨烯复合材料的性能分析结果表明,在聚乳酸的结晶度、结晶速率和对聚乳酸的结晶成核上,石墨烯比氧化石墨烯具有更优异的表现,但在热稳定性能方面,氧化石墨烯比石墨烯优异;在力学性能方面,有增强和降低两种影响,添加少量氧化石墨烯时聚乳酸的力学性能降低,而含质量分数为0.5%的石墨烯复合材料在拉伸实验和冲击实验中的增强效果较为明显。  相似文献   

10.
三维石墨烯具有高孔隙率、高热导率和良好的热稳定性等优点。提出利用三维石墨烯形成的连续"导热链"填充环氧树脂从而改善环氧树脂传热性能的方法,通过化学氧化还原法制备了三维石墨烯,进而采用浇注法制备三维石墨烯/环氧树脂复合材料。实验测试了导热性能、比热容和玻璃化转变温度等热物性参数。结果表明:三维石墨烯可大幅度提髙环氧树脂的导热性能。在三维石墨烯的质量分数为3%时,环氧树脂的热导率提高近7倍。研究结果为三维石墨烯在导热复合材料领域的应用提供了实验依据。  相似文献   

11.
使用层间喷涂法制备了石墨烯/炭纤维/聚醚醚酮(GR/CF/PEEK)复合材料,对材料微观形态、力学性能、热学以及电学性能进行了分析。结果表明,0.1 wt%的石墨烯的加入即可使复合材料的层间剪切强度(ILSS)从57.3 MPa增加到77.6 MPa,弯曲强度和弯曲模量分别从1 226.2 MPa、64.5 GPa增加到1 512.3 MPa、73.6 GPa。差示扫描量热结果证明少量石墨烯的加入能够提高复合材料基体的结晶度。同时复合材料的热导率和电导率也随着石墨烯含量的增加而增加,加入0.5 w t%的石墨烯,复合材料的热导率和电导率与未加入石墨烯相比分别增加了15.5%和73.1%。GR/CF/PEEK复合材料与CF/PEEK相比具有更优良的综合性能。  相似文献   

12.
采用分子动力学方法系统地研究了石墨烯/铜复合材料的剪切力学性能,包括剪切弹性模量、剪切屈服强度、剪切破坏强度及剪切变形机制。研究发现,与单晶铜的剪切模拟相比较,石墨烯的加入显著增强了石墨烯/铜复合材料的剪切强度,并且剪切强度随着石墨烯体积分数的增大而提高。复合材料中的石墨烯层与铜层产生了协同作用,即石墨烯层阻碍了铜的位错扩展,铜层限制了石墨烯的结构屈曲。对含球形缺陷的石墨烯/铜复合材料的剪切性能也进行了研究。结果表明,不同位置和数量的球形小缺陷对复合材料的剪切性能影响不大,小缺陷石墨烯/铜复合材料仍具有较好的性能和使用价值。但随着缺陷直径的增大,复合材料的剪切强度明显减小。  相似文献   

13.
通过三步法及真空辅助浸渍的方法制备了石墨烯-吡咯气凝胶/环氧树脂复合材料,该复合材料质轻并且内部的多孔石墨烯-吡咯气凝胶具有较为均一的三维结构,在与环氧树脂复合之后,这种三维结构也能很好地保留。石墨烯的三维网络为电子传导提供了快速通道,使材料的导电性能显著提高,仅有0.23%(质量分数)填料含量的石墨烯-吡咯气凝胶/环氧树脂复合材料(1G-1%P,1300℃)的电导率可以达到67.1 S/m。石墨烯-吡咯气凝胶/环氧树脂复合材料(1G-1%P,1300℃)的电磁屏蔽性能在8~12 GHz可以达到33 dB,更重要的是石墨烯-吡咯气凝胶骨架还起到了增强环氧树脂基体力学性能的作用,弯曲强度和弯曲模量与环氧树脂基体相比分别提高了60.93%和25.98%(10G-5%P,180℃),石墨烯-吡咯气凝胶的三维结构可以有效地改善材料整体的电磁屏蔽性能以及力学性能。  相似文献   

14.
使用层间喷涂法制备了石墨烯/炭纤维/聚醚醚酮(GR/CF/PEEK)复合材料,对材料微观形态、力学性能、热学以及电学性能进行了分析。结果表明,0.1 wt%的石墨烯的加入即可使复合材料的层间剪切强度(ILSS)从57.3 MPa增加到77.6 MPa,弯曲强度和弯曲模量分别从1 226.2 MPa、64.5 GPa增加到1 512.3 MPa、73.6 GPa。差示扫描量热结果证明少量石墨烯的加入能够提高复合材料基体的结晶度。同时复合材料的热导率和电导率也随着石墨烯含量的增加而增加,加入0.5 w t%的石墨烯,复合材料的热导率和电导率与未加入石墨烯相比分别增加了15.5%和73.1%。GR/CF/PEEK复合材料与CF/PEEK相比具有更优良的综合性能。  相似文献   

15.
为研究高性能炭纤维的表面特征及炭纤维与环氧树脂基体之间的界面结合,获得高性能的结构型炭纤维/环氧树脂复合材料(CFRP).采用红外光谱、扫描电镜、X射线光电子能谱仪、单向板、NOL环、Φ150 mm压力容器等方法,对炭纤维/环氧树脂复合材料(CFRP)3种高性能炭纤维表面状态及复合材料性能进行了系统研究.结果表明,3种炭纤维表面涂层均能参与环氧基团固化反应在界面上形成化学键;UT500系列炭纤维表面轴向沟槽可与树脂基体通过物理"机械啮合"作用形成更强的界面结合;UT500-12K炭纤维/E-51单向板剪切强度为91.46 MPa,NOL环剪切强度为77.16 MPa,分别比T700-12K/E-51体系高约40%.CFRP复合材料中炭纤维的微观结构、表面活性是决定复合材料界面结合的重要因素,直接影响复合材料制品的含胶量,进而影响其综合力学性能.  相似文献   

16.
利用化学气相沉积(CVD)法在碳纤维(CF)表面生长碳纳米管(CNTs),制备了CF-CNTs多尺度增强体,增强体与环氧树脂(EP)结合得到CF-CNTs/EP复合材料。采用场发射扫描电镜(FESEM)、高分辨透射电镜(HRTEM)等方法研究了不同CVD工艺参数对CF-CNTs多尺度增强体的影响,并研究了不同CVD时间对CFCNTs/EP复合材料力学性能的影响。结果表明:沉积温度为500℃、沉积时间为10min、反应压力为0.02 MPa时,制备得到的多尺度增强体性能最好。CF-CNTs多尺度增强体较未生长CNTs的碳纤维与环氧树脂的浸润性明显提高。在CVD时间为10min时,所得CF-CNTs/EP复合材料的界面剪切强度(IFSS)最大可提高90.6%,层间剪切强度(ILSS)最大可提高24.4%。同时,在制备环氧树脂复合材料过程中碳纤维的不加捻与加捻相比,其ILSS提高了11.3%。  相似文献   

17.
首先采用Hummers法制备氧化石墨烯,然后采用化学还原法制备石墨烯,对制得的石墨烯进行形貌、X射线衍射和热重表征,并将石墨烯添加到环氧树脂中,对制得的复合材料进行力学性能和导电性能测试。结果表明:制得的石墨烯层数少,且厚度小;石墨烯具有良好的热稳定性能;石墨烯明显增强了环氧树脂的力学性能和导电性能。  相似文献   

18.
采用酚醛树脂作为炭纤维表面处理剂, 可以显著提高多种炭纤维和环氧树脂界面强度。通过XPS、AFM、SEM和层间剪切强度等方法, 研究了不同浓度的酚醛树脂表面处理剂对炭纤维增强环氧树脂复合材料层间剪切强度、炭纤维表面元素和化学键组成的影响, 以及炭纤维增强环氧树脂复合材料断面微观形貌的变化。XPS和AFM分析结果表明酚醛树脂和炭纤维表面发生了化学反应, 而且酚醛树脂处理剂浓度越高, 和炭纤维表面发生反应的基团也越多, 表面越光滑平整, SEM和层间剪切强度研究表明酚醛树脂处理后的复合材料界面粘结性能得到很大的改善, 而且界面粘结性能强烈依靠处理剂浓度。   相似文献   

19.
将连续炭纤维束用自制的空气梳分散成单丝状长带后, 通过采用循环伏安法的电化学方法将单体苯酚在炭纤维表面聚合成膜, 对炭纤维进行表面修饰, 以提高复合材料中炭纤维与树脂基体的界面粘结性能。红外光谱分析表明, 苯酚电聚合膜能够增加炭纤维表面的羟基、 醚键等活性官能团, 从而提高炭纤维与环氧树脂基体的界面粘结强度。与未进行表面修饰的炭纤维增强环氧树脂复合材料相比, 以聚苯酚膜修饰的炭纤维单丝带增强的环氧树脂基复合材料横向拉伸强度最大提高了90%, 纵向拉伸强度最大提高了45%, 层间剪切强度最大提高了110%。实验也表明, 将炭纤维束分散成炭纤维单丝带后能够更有效地增强复合材料的各项力学性能。   相似文献   

20.
选用国产的连续炭纤维长丝与ABS树脂分别采用常规共混法、薄膜层叠法、溶液浸渍法三种工艺制备了连续炭纤维增强ABS热塑性树脂复合材料。通过对复合材料的力学性能、热性能、动态黏弹性及微观形貌的研究,分析了ABS热塑性树脂基复合材料的制备工艺对界面性能的影响。结果表明:不同制备工艺中复合材料随炭纤维含量的增加其各项力学性能都不断提高,当炭纤维含量为60%(质量分数)时力学性能达到最高,但不同制备工艺导致复合材料界面性能差异较大,影响其力学性能的增幅。溶液浸渍法制备的复合材料树脂对炭纤维的浸润性良好,其最大拉伸强度和层间剪切强度分别达到1100MPa和71MPa,较常规共混法复合材料性能提高约80%;其损耗角正切仅为常规共混法复合材料的40%;界面性能提高使复合材料的耐热性能提高。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号