首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Model predictive control (MPC) is a well-established controller design strategy for linear process models. Because many chemical and biological processes exhibit significant nonlinear behaviour, several MPC techniques based on nonlinear process models have recently been proposed. The most significant difference between these techniques is the computational approach used to solve the nonlinear model predictive control (NMPC) optimization problem. Consequently, analysis of NMPC techniques is often connected to the computational approach employed. In this paper, a theoretical analysis of unconstrained NMPC is presented that is independent of the computational approach. A nonlinear discrete-time, state-space model is used to predict the effects of future inputs on future process outputs. It is shown that model inverse, pole-placement, and steady-state controllers can be obtained by suitable selection of the control and prediction horizons. Moreover, the NMPC optimization problem can be modified to yield nonlinear internal model control (NIMC). The computational requirements of NIMC are considerably less than NMPC, but the NIMC approach is currently restricted to nonlinear models with well-defined and stable inverses. The NIMC controller is shown to provide superior servo and regulatory performance to a linear IMC controller for a continuous stirred tank reactor.  相似文献   

2.
In model predictive control (MPC), the input sequence is computed, minimizing a usually quadratic cost function based on the predicted evolution of the system output. In the case of nonlinear MPC (NMPC), the use of nonlinear prediction models frequently leads to non‐convex optimization problems with several minimums. This paper proposes a new NMPC strategy based on second order Volterra series models where the original performance index is approximated by quadratic functions, which represent a lower bound of the original performance index. Convexity of the approximating quadratic cost functions can be achieved easily by a suitable choice of the weighting of the control increments in the performance index. The approximating cost functions can be globally minimized by convex optimization techniques in order to compute the input sequence. The minimization of the performance index is carried out by an iterative optimization procedure, which guarantees convergence to the solution. Furthermore, for a nominal prediction model, asymptotic stability for the proposed NMPC strategy can be shown. In the case of considering an estimation error in the prediction model, input‐to‐state practical stability is assured. The control performance of the NMPC strategy is illustrated by experimental results. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

3.
Suitable environmental conditions are a fundamental issue in greenhouse crop growth and can be achieved by advanced climate control strategies. In different climatic zones, natural ventilation is used to regulate both the greenhouse temperature and humidity. In mild climates, the greatest problem faced by far in greenhouse climate control is cooling, which, for dynamical reasons, leads to natural ventilation as a standard tool. This work addresses the design of a nonlinear model predictive control (NMPC) strategy for greenhouse temperature control using natural ventilation. The NMPC strategy is based on a second-order Volterra series model identified from experimental input/output data of a greenhouse. These models, representing the simple and logical extension of convolution models, can be used to approximate the nonlinear dynamic effect of the ventilation and other environmental conditions on the greenhouse temperature. The developed NMPC is applied to a greenhouse and the control performance of the proposed strategy will be illustrated by means of experimental results.  相似文献   

4.
由于工业实践的需要,非线性预测控制近年来受到广泛地关注.Volterra模型是一类特殊的非线性模型,非常适合描述工业过程中的无记忆非线性对象.传统的基于Volterra模型的控制器合成法及迭代计算预测控制器法计算量大,且不便于处理控制约束.非线性模型预测控制求解是典型的非线性规划问题,序列二次规划(sequential quadratic program,SQP)算法是求解非线性规划问题常用方法之一.针对Volterra非线性模型预测控制求解问题,本文将滤子法与一种信赖域SQP算法相结合,提出一种改进SQP算法用于基于非线性Volterra模型的带控制约束的多步预测控制求解,并分析了所提方法的收敛性.工业实例仿真结果证实了所提方法的可行性与有效性.  相似文献   

5.
Model predictive control (MPC) has been effectively applied in process industries since the 1990s. Models in the form of closed equation sets are normally needed for MPC, but it is often difficult to obtain such formulations for large nonlinear systems. To extend nonlinear MPC (NMPC) application to nonlinear distributed parameter systems (DPS) with unknown dynamics, a data-driven model reduction-based approach is followed. The proper orthogonal decomposition (POD) method is first applied off-line to compute a set of basis functions. Then a series of artificial neural networks (ANNs) are trained to effectively compute POD time coefficients. NMPC, using sequential quadratic programming is then applied. The novelty of our methodology lies in the application of POD's highly efficient linear decomposition for the consequent conversion of any distributed multi-dimensional space-state model to a reduced 1-dimensional model, dependent only on time, which can be handled effectively as a black-box through ANNs. Hence we construct a paradigm, which allows the application of NMPC to complex nonlinear high-dimensional systems, even input/output systems, handled by black-box solvers, with significant computational efficiency. This paradigm combines elements of gain scheduling, NMPC, model reduction and ANN for effective control of nonlinear DPS. The stabilization/destabilization of a tubular reactor with recycle is used as an illustrative example to demonstrate the efficiency of our methodology. Case studies with inequality constraints are also presented.  相似文献   

6.
ABSTRACT

Linear model predictive control (MPC) can be currently deployed at outstanding speeds, thanks to recent progress in algorithms for solving online the underlying structured quadratic programs. In contrast, nonlinear MPC (NMPC) requires the deployment of more elaborate algorithms, which require longer computation times than linear MPC. Nonetheless, computational speeds for NMPC comparable to those of MPC are now regularly reported, provided that the adequate algorithms are used. In this paper, we aim at clarifying the similarities and differences between linear MPC and NMPC. In particular, we focus our analysis on NMPC based on the real-time iteration (RTI) scheme, as this technique has been successfully tested and, in some applications, requires computational times that are only marginally larger than linear MPC. The goal of the paper is to promote the understanding of RTI-based NMPC within the linear MPC community.  相似文献   

7.
The implementation of model predictive control (MPC) requires to solve an optimization problem online. The computation time, often not negligible especially for nonlinear MPC (NMPC), introduces a delay in the feedback loop. Moreover, it impedes fast sampling rate setting for the controller to react to uncertainties quickly. In this paper, a dual time scale control scheme is proposed for linear/nonlinear systems with external disturbances. A pre-compensator works at fast sampling rate to suppress uncertainty, while the outer MPC controller updates the open loop input sequence at a slower rate. The computation delay is explicitly considered and compensated in the MPC design. Four robust MPC algorithms for linear/nonlinear systems in the literature are adopted and tailored for the proposed control scheme. The recursive feasibility and stability are rigorously analysed. Three simulation examples are provided to validate the proposed approaches.  相似文献   

8.
A multivariable multi-rate nonlinear model predictive control (NMPC) strategy is applied to styrene polymerization. The NMPC algorithm incorporates a multi-rate Extended Kalman Filter (EKF) to handle state variable and parameter estimation. A fundamental model is developed for the styrene polymerization CSTR, and control of polymer properties such as number average molecular weight (NAMW) and polydispersity is considered. These properties characterize the final polymer distribution and are strong indicators of the polymer qualities of interest. Production rate control is also demonstrated. Temperature measurements are available frequently while laboratory measurements of concentration and molecular weight distribution are available infrequently with substantial time delays between sampling and analysis. Observability analysis of the augmented system provides guidelines for the design of the augmented disturbance model for use in estimation using the multi-rate EKF. The observability analysis links measurement sets and corresponding observable disturbance models, and shows that measurements of moments of the polymer distribution are essential for good estimation and control. The CSTR is operated at an open-loop unstable steady state. Control simulations are performed under conditions of plant-model structural mismatch and in the presence of parameter uncertainty and disturbances, and the proposed multi-rate NMPC algorithm is shown to provide superior performance compared to linear multi-rate and nonlinear single-rate MPC algorithms. The major contributions of this work are the development of the multi-rate estimator and the measurement design study based on the observability analysis.  相似文献   

9.
Model predictive control (MPC) schemes are now widely used in process industries for the control of key unit operations. Linear model predictive control (LMPC) schemes which make use of linear dynamic model for prediction, limit their applicability to a narrow range of operation (or) to systems which exhibit mildly nonlinear dynamics.

In this paper, a nonlinear observer based model predictive controller (NMPC) for nonlinear system has been proposed. An approach to design NMPC based on fuzzy Kalman filter (FKF) and augmented state fuzzy Kalman filter (ASFKF) has been presented. The efficacy of the proposed NMPC schemes have been demonstrated by conducting simulation studies on the continuous stirred tank reactor (CSTR). The analysis of the extensive dynamic simulation studies revealed that, the NMPC schemes formulated produces satisfactory performance for both servo and regulatory problems. Simulation results also include an inferential control case, where the reactor concentration is not measured but estimated from temperature measurement and used in the NMPC based on FKF and ASFKF formulations.  相似文献   


10.
Two advanced nonlinear model-based control design methods – nonlinear model predictive control (NMPC) and a two-degree-of-freedom control-scheme with flatness-based feedforward control design and decentralised PI-controllers (FB-2DOF) – are compared in view of industrial application. The comparative evaluation is carried out on a setpoint-transition of the Klatt–Engell reactor model. Based on an analysis of simulation scenarios, the controllers are compared with respect to controller performance, robustness criteria, and implementation issues. Thereby, the choice of the control task and the comparison methodology are oriented on industrial practice.In the considered comparative evaluation, NMPC exhibits performance advantages when it comes to time-efficient setpoint-transitions in the nominal case, in which FB-2DOF control design is restricted by the existing input constraints. In return, robustness of stability of the FB-2DOF controller is determined only by the feedback controll part; it is therefore independent from the setpoint-transition performance – determined by the feedforward controll part – whereas the NMPC suffers from degradation of robustness properties if it is tuned for time-efficiency only. NMPC allows direct incorporation of process models and constraints, but, as it employs computationally expensive online optimisation, has to be connected to the digital control system (DCS) via some standard interface. The FB-2DOF controller in contrast can be directly implemented in a DCS, whereby the feedforward-part can be realised as an extension of an already existing feedback-part.  相似文献   

11.
Nonlinear model predictive control (NMPC) algorithms are based on various nonlinear models. A number of on-line optimization approaches for output-feedback NMPC based on various black-box models can be found in the literature. However, NMPC involving on-line optimization is computationally very demanding. On the other hand, an explicit solution to the NMPC problem would allow efficient on-line computations as well as verifiability of the implementation. This paper applies an approximate multi-parametric nonlinear programming approach to explicitly solve output-feedback NMPC problems for constrained nonlinear systems described by black-box models. In particular, neural network models are used and the optimal regulation problem is considered. A dual-mode control strategy is employed in order to achieve an offset-free closed-loop response in the presence of bounded disturbances and/or model errors. The approach is applied to design an explicit NMPC for regulation of a pH maintaining system. The verification of the NMPC controller performance is based on simulation experiments.  相似文献   

12.
In this paper a nonlinear model predictive control (NMPC) based on a Wiener model with a piecewise linear gain is presented. This approach retains all the interested properties of the classical linear model predictive control (MPC) and keeps computations easy to solve due to the canonical structure of the nonlinear gain. Some guidelines for the identification of the nominal model as well as the uncertainty bounds are discussed, and two examples that show the possibility of application of this control scheme to real life problems are presented.  相似文献   

13.
This work aims the development of an inferential nonlinear model predictive control (NMPC) scheme based on a nonlinear fast rate model that is identified from irregularly sampled multirate data, which is corrupted with unmeasured disturbances and measurement noise. The model identification is carried out in two steps. In the first step, a MISO fast rate nonlinear output error (NOE) model is identified from the irregularly sampled output data. In the second step, a time varying nonlinear auto-regressive (NAR) type model is developed using the residuals generated in the first step. The deterministic and stochastic components of the observer are parameterized using generalized ortho-normal basis filters (GOBF). The identified NOE and NAR models are combined to form MISO state observers. We then proceed to use these identified observers to formulate a nonlinear MPC strategy for controlling irregularly sampled multirate systems. The identified observers are used to generate inter-sample estimates of the irregularly sampled outputs and for performing future trajectory predictions. The efficacy of the proposed modeling and control scheme is demonstrated using simulations on a benchmark continuous fermentation process. This process exhibits input multiplicity and change in the sign of steady state gain in the operating region. The validity of the proposed modeling and control scheme is also established by conducting identification and control experiments on a laboratory scale heater-mixer setup. The proposed NMPC gives satisfactory regulatory as well as servo performance over a wide operating range in the irregularly sampled multirate scenario.  相似文献   

14.
王康  李琼琼  王子洋  杨家富 《控制与决策》2022,37(10):2535-2542
针对高速行驶工况下,无人车转弯时的侧倾易导致车辆模型非线性程度增加,引起轨迹跟踪精度下降和状态失稳的问题,设计一种考虑车辆侧倾因素,基于非线性模型预测控制(NMPC)的无人车轨迹跟踪控制器.根据拉格朗日分析力学和车辆运动学,考虑车辆侧倾几何学和载荷转移效应,建立考虑侧倾因素的非线性车辆模型,包括车体动力学模型和修正的“Magic Formula”轮胎模型;基于此车辆模型,构建非线性模型预测控制器(NMPC)的预测模型,并设定控制器的线性、非线性约束,以保证车辆的运动状态处于稳定区域内.在Carsim和Simulink联合仿真平台上,验证车辆高速蛇形工况和双移线工况下的轨迹跟踪控制效果,仿真结果显示,所设计的控制器可有效改善高速弯道工况下的跟踪精度和车辆状态稳定性.  相似文献   

15.
The particular industrial interest in fuel cells is based on the possibility to generate clean energy both for stationary and automotive applications. Performance and safety issues of fuel cells are closely related to the control strategy used for the fuel and oxidant supply. In PEM (polymer electrolyte membrane or proton exchange membrane) fuel cells the oxygen excess ratio expresses the proportion between oxygen reacting in the cells and oxygen entering the stack and represents a decisive variable for the mentioned issues. This work is focused on the design of a nonlinear model predictive control (NMPC) strategy manipulating the air flow rate in order to maintain the oxygen excess ratio in a desired value, both for safety and performance reasons. The designed NMPC, based on a second order Volterra series model, was implemented on a commercial fuel cell. The proposed NMPC strategy is validated in experiments and compared to a linear model predictive controller and to the original built-in controller.  相似文献   

16.
A plant-wide control strategy based on integrating linear model predictive control (LMPC) and nonlinear model predictive control (NMPC) is proposed. The hybrid method is applicable to plants that can be decomposed into approximately linear subsystems and highly nonlinear subsystems that interact via mass and energy flows. LMPC is applied to the linear subsystems and NMPC is applied to the nonlinear subsystems. A simple controller coordination strategy that counteracts interaction effects is proposed for the case of one linear subsystem and one nonlinear subsystem. A reactor/separator process with recycle is used to compare the hybrid method to conventional LMPC and NMPC techniques.  相似文献   

17.
Linear model predictive control (MPC) is a widely‐used control strategy in chemical processes. Its extension to nonlinear MPC (NMPC) has drawn increasing attention since many process systems are inherently nonlinear. When implementing the NMPC based on a nonlinear predictive model, a nonlinear dynamic optimization problem must be calculated. For the sake of solving this optimization problem efficiently, a latent‐variable dynamic optimization approach is proposed. Two kinds of constraint formulations, original variable constraint and Hotelling T2 statistic constraint, are also discussed. The proposed method is illustrated in a pH neutralization process. The results demonstrate that the latent‐variable dynamic optimization based the NMPC strategy is efficient and has good control performance.  相似文献   

18.
This paper proposes a new method for model predictive control (MPC) of nonlinear systems to calculate stability region and feasible initial control profile/sequence, which are important to the implementations of MPC. Different from many existing methods, this paper distinguishes stability region from conservative terminal region. With global linearization, linear differential inclusion (LDI) and linear matrix inequality (LMI) techniques, a nonlinear system is transformed into a convex set of linear systems, and then the vertices of the set are used off-line to design the controller, to estimate stability region, and also to determine a feasible initial control profile/sequence. The advantages of the proposed method are demonstrated by simulation study.  相似文献   

19.
《Journal of Process Control》2014,24(8):1247-1259
In the last years, the use of an economic cost function for model predictive control (MPC) has been widely discussed in the literature. The main motivation for this choice is that often the real goal of control is to maximize the profit or the efficiency of a certain system, rather than tracking a predefined set-point as done in the typical MPC approaches, which can be even counter-productive. Since the economic optimal operation of a system resulting from the application of an economic model predictive control approach drives the system to the constraints, the explicit consideration of the uncertainties becomes crucial in order to avoid constraint violations. Although robust MPC has been studied during the past years, little attention has yet been devoted to this topic in the context of economic nonlinear model predictive control, especially when analyzing the performance of the different MPC approaches. In this work, we present the use of multi-stage scenario-based nonlinear model predictive control as a promising strategy to deal with uncertainties in the context of economic NMPC. We make a comparison based on simulations of the advantages of the proposed approach with an open-loop NMPC controller in which no feedback is introduced in the prediction and with an NMPC controller which optimizes over affine control policies. The approach is efficiently implemented using CasADi, which makes it possible to achieve real-time computations for an industrial batch polymerization reactor model provided by BASF SE. Finally, a novel algorithm inspired by tube-based MPC is proposed in order to achieve a trade-off between the variability of the controlled system and the economic performance under uncertainty. Simulations results show that a closed-loop approach for robust NMPC increases the performance and that enforcing low variability under uncertainty of the controlled system might result in a big performance loss.  相似文献   

20.
This paper presents a multivariable nonlinear model predictive control (NMPC) scheme for the regulation of a low-density polyethylene (LDPE) autoclave reactor. A detailed mechanistic process model developed previously was used to describe the dynamics of the LDPE reactor and the properties of the polymer product. Closed-loop simulations are used to demonstrate the disturbance rejection and tracking performance of the NMPC algorithm for control of reactor temperature and weight-averaged molecular weight (WAMW). In addition, the effect of parametric uncertainty in the kinetic rate constants of the LDPE reactor model on closed-loop performance is discussed. The unscented Kalman filtering (UKF) algorithm is employed to estimate plant states and disturbances. All control simulations were performed under conditions of noisy process measurements and structural plant–model mismatch. Where appropriate, the performance of the NMPC algorithm is contrasted with that of linear model predictive control (LMPC). It is shown that for this application the closed-loop performance of the UKF based NMPC scheme is very good and is superior to that of the linear predictive controller.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号